一种基于上下文相关和判别相关滤波器的目标跟踪方法

    公开(公告)号:CN109544600A

    公开(公告)日:2019-03-29

    申请号:CN201811403138.0

    申请日:2018-11-23

    Abstract: 本发明公开了一种基于上下文相关和判别相关滤波器的目标跟踪方法,包括步骤:S1、构建基于相关滤波器的端对端的跟踪网络,以所述跟踪网络为基准网络构建用于追踪跟踪对象的跟踪器;S2、利用VGG16模型的前三层卷积层生成特征图,并基于所述特征图以及上下文信息训练学习上下文相关滤波器和尺度相关滤波器;S3、结合所述上下文相关滤波器与所述特征图训练平移滤波器,以所述平移滤波器定位跟踪对象的位置;S4、基于跟踪对象的所述位置使用所述尺度相关滤波器计算跟踪对象的比例,并结合所述平移滤波器、尺度相关滤波器、特征图以及上下文信息定位下一帧中跟踪对象的位置;本发明能够有效提高目标跟踪的准确性和鲁棒性。

    一种基于双分支时空正则化相关滤波器的目标跟踪方法

    公开(公告)号:CN109727272B

    公开(公告)日:2022-08-12

    申请号:CN201811383638.2

    申请日:2018-11-20

    Abstract: 本发明公开了一种基于双分支时空正则化相关滤波器的目标跟踪方法,用于基于视频中的图像帧进行追踪目标的追踪操作,所述方法包括步骤:S1、在包含外观分支网络和语义分支网络的孪生全卷积网络上添加由相关滤波器构成的相关滤波器层,实现相关滤波器与孪生全卷积网络相互之间的端对端训练学习;S2、结合所述外观分支网络和语义分支网络结合,以提升所述孪生全卷积网络在目标追踪过程中对包含追踪目标的图像帧的判别力;S3、采用时空正则化所述相关滤波器,并使用通过时空正则化的所述相关滤波器处理所述图像帧,实现对追踪目标的追踪;本发明能够有效提升跟踪精度和跟踪速度。

    一种基于双分支时空正则化相关滤波器的目标跟踪方法

    公开(公告)号:CN109727272A

    公开(公告)日:2019-05-07

    申请号:CN201811383638.2

    申请日:2018-11-20

    Abstract: 本发明公开了一种基于双分支时空正则化相关滤波器的目标跟踪方法,用于基于视频中的图像帧进行追踪目标的追踪操作,所述方法包括步骤:S1、在包含外观分支网络和语义分支网络的孪生全卷积网络上添加由相关滤波器构成的相关滤波器层,实现相关滤波器与孪生全卷积网络相互之间的端对端训练学习;S2、结合所述外观分支网络和语义分支网络结合,以提升所述孪生全卷积网络在目标追踪过程中对包含追踪目标的图像帧的判别力;S3、采用时空正则化所述相关滤波器,并使用通过时空正则化的所述相关滤波器处理所述图像帧,实现对追踪目标的追踪;本发明能够有效提升跟踪精度和跟踪速度。

Patent Agency Ranking