-
公开(公告)号:CN110162706A
公开(公告)日:2019-08-23
申请号:CN201910431441.X
申请日:2019-05-22
Applicant: 南京邮电大学
IPC: G06F16/9535 , G06K9/62 , G06N3/04
Abstract: 本发明公开了一种基于交互数据聚类的个性化推荐方法及系统,包括构建用户项目交互特征矩阵、构建用户历史行为矩阵、使用分类器对交互矩阵P进行分类、相似用户聚类、邻近项目选择、神经网络训练、个性化推荐,本发明将用户对项目的浏览记录、用户搜索记录等历史信息与用户个人信息拼接构造用户特征,使用聚类算法对用户特征进行聚类,并在此基础上对特定用户进行个性化推荐,改进了传统矩阵分解模型的性能,将矩阵分解与多层感知机结合,对用户项目间的关系进行学习预测。提升了大数据环境下推荐的精度。
-
公开(公告)号:CN110162706B
公开(公告)日:2021-10-26
申请号:CN201910431441.X
申请日:2019-05-22
Applicant: 南京邮电大学
IPC: G06F16/9535 , G06K9/62 , G06N3/04
Abstract: 本发明公开了一种基于交互数据聚类的个性化推荐方法及系统,包括构建用户项目交互特征矩阵、构建用户历史行为矩阵、使用分类器对交互矩阵P进行分类、相似用户聚类、邻近项目选择、神经网络训练、个性化推荐,本发明将用户对项目的浏览记录、用户搜索记录等历史信息与用户个人信息拼接构造用户特征,使用聚类算法对用户特征进行聚类,并在此基础上对特定用户进行个性化推荐,改进了传统矩阵分解模型的性能,将矩阵分解与多层感知机结合,对用户项目间的关系进行学习预测。提升了大数据环境下推荐的精度。
-