-
公开(公告)号:CN108875614A
公开(公告)日:2018-11-23
申请号:CN201810578548.2
申请日:2018-06-07
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于深度学习图像处理的摔倒检测方法,该方法不依靠穿戴设备和传感器,通过摄像头拍摄的高频次的图片传到服务器端,服务器端通过Deepcut深度神经网络模型进行人体关键点检测,将输出的人体关键点检测图数据输入到深度神经网络中,通过事先准备的人体各类情况下关键点分布的训练数据训练出的模型作摔倒判断,在图像处理方面每张图片处理速度在0.2秒左右,具有很强的实时性。通过上述方式,本发明能够有效地检测到摔倒事件。不同状态的摔倒和人体的其他各个形态实例检测表明,提出的方法可以有效地检测摔倒事件。本发明可以应用在智慧城市的智慧家居系统中,保障老人的居家安全。