基于脑电信号熵特征和模型融合的癫痫预警系统和方法

    公开(公告)号:CN118203333A

    公开(公告)日:2024-06-18

    申请号:CN202410402027.7

    申请日:2024-04-03

    Abstract: 本发明提供基于脑电信号熵特征和模型融合的癫痫预警系统和方法,包括信号采集模块;信号分类分段模块:用于对第一脑电信号进行分类,分为两类:A类和B类,A类为预定时间段后有癫痫发作的信号,B类为预定时间后无癫痫发作的信号;信号去噪模块;特征提取模块:用于对去噪后的第一脑电信号、第二脑电信号从时域、频域、时频域及空间域四个角度计算第一脑电信号、第二脑电信号的熵特征;模型训练模块:用于训练决策树、随机森林、GBDT三种机器学习模型,训练获得最终的融合模型;发作预警模块:所述发作预警模块对预定时间段后是否有癫痫发作做出预警。本发明提高了预测准确率,同时也提升了整个系统的性能。

Patent Agency Ranking