-
公开(公告)号:CN111626330B
公开(公告)日:2022-07-26
申请号:CN202010324557.6
申请日:2020-04-23
Applicant: 南京邮电大学
IPC: G06V10/75 , G06V10/774 , G06V10/764 , G06V10/80 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于多尺度特征图重构和知识蒸馏的目标检测方法与系统,该方法首先利用骨干网络Darknet‑53提取特征,深层特征通过上采样和浅层特征张量拼接生成多尺度特征图;然后采用特征重标定策略来自动获取特征图中每个通道的权重,依照权重提升有用的特征并抑制无用特征,再用残差模块融合顶层特征的语义信息和底层特征的细节信息;再将骨干网络中批量归一化层的γ系数引入到剪枝目标函数中进行训练,根据修剪阈值将低于阈值的γ系数所在通道从模型中去除;最后将训练好的YOLOv3基准模型作为教师网络,剪枝后的模型作为学生网络进行知识蒸馏。本发明改善了在大范围内不同大小物体检测的精度问题,同时降低了模型的计算量,提高了模型检测速度。
-
公开(公告)号:CN111626330A
公开(公告)日:2020-09-04
申请号:CN202010324557.6
申请日:2020-04-23
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于多尺度特征图重构和知识蒸馏的目标检测方法与系统,该方法首先利用骨干网络Darknet-53提取特征,深层特征通过上采样和浅层特征张量拼接生成多尺度特征图;然后采用特征重标定策略来自动获取特征图中每个通道的权重,依照权重提升有用的特征并抑制无用特征,再用残差模块融合顶层特征的语义信息和底层特征的细节信息;再将骨干网络中批量归一化层的γ系数引入到剪枝目标函数中进行训练,根据修剪阈值将低于阈值的γ系数所在通道从模型中去除;最后将训练好的YOLOv3基准模型作为教师网络,剪枝后的模型作为学生网络进行知识蒸馏。本发明改善了在大范围内不同大小物体检测的精度问题,同时降低了模型的计算量,提高了模型检测速度。
-