一种基于全局与局部特征的对抗学习跨模态行人重识别方法

    公开(公告)号:CN115063832B

    公开(公告)日:2024-11-08

    申请号:CN202210493056.X

    申请日:2022-05-07

    Abstract: 本发明公开了一种基于全局与局部特征的对抗学习跨模态行人重识别方法,包括:将选定的可见光图像样本集Xv和红外图像样本集Xt作为训练数据;将可见光图像样本和红外图像样本输入所构建的具有注意力机制的特征提取网络获取特征;将从具有注意力机制的特征提取网络获得的可见光特征fiv、红外特征fit输入局部特征学习模块进行操作;将从具有注意力机制的特征提取网络获得的可见光特征fiv、红外特征fit输入预测一致性模块进行操作;将可见光拼接特征fiv′和红外拼接特征fit′输入对抗学习模块进行处理。本发明可有效减小可见光和红外特征的模态差异,大大提高了跨模态行人重识别的检索率。

    一种基于全局与局部特征的对抗学习跨模态行人重识别方法

    公开(公告)号:CN115063832A

    公开(公告)日:2022-09-16

    申请号:CN202210493056.X

    申请日:2022-05-07

    Abstract: 本发明公开了一种基于全局与局部特征的对抗学习跨模态行人重识别方法,包括:将选定的可见光图像样本集Xv和红外图像样本集Xt作为训练数据;将可见光图像样本和红外图像样本输入所构建的具有注意力机制的特征提取网络获取特征;将从具有注意力机制的特征提取网络获得的可见光特征fiv、红外特征fit输入局部特征学习模块进行操作;将从具有注意力机制的特征提取网络获得的可见光特征fiv、红外特征fit输入预测一致性模块进行操作;将可见光拼接特征fiv′和红外拼接特征fit′输入对抗学习模块进行处理。本发明可有效减小可见光和红外特征的模态差异,大大提高了跨模态行人重识别的检索率。

Patent Agency Ranking