-
公开(公告)号:CN112801153A
公开(公告)日:2021-05-14
申请号:CN202110067281.2
申请日:2021-01-19
Applicant: 南京邮电大学
Abstract: 本发明公开了一种嵌入局部二值模式(LBP)特征的图的半监督图像分类方法及系统。该方法首先建立包含有标签样本和无标签样本的图像库;然后构建一种卷积神经网络模型,并利用图像库中的有标签样本训练出初始模型;进而将有标签样本与无标签样本一起输入初始模型,提取样本的特征向量,以此特征向量构建一个邻接矩阵Wcnn;接着使用输入样本图像的LBP特征再构建一个邻接矩阵Wlbp;将Wcnn与Wlbp相加得到新的邻接矩阵W,根据W构建一个图,通过标签传播得到无标签样本的伪标签;最后基于初始模型使用图像库中所有样本及其标签训练出最终的模型,用于图像分类。本发明通过引入图像的LBP特征来构建图,使得通过标签传播得到的标签的置信度更高,有利于提高图像分类的准确率。
-
公开(公告)号:CN112801153B
公开(公告)日:2022-08-26
申请号:CN202110067281.2
申请日:2021-01-19
Applicant: 南京邮电大学
IPC: G06V10/764 , G06K9/62 , G06V10/40 , G06N3/04 , G06N3/08 , G06V10/774
Abstract: 本发明公开了一种嵌入局部二值模式(LBP)特征的图的半监督图像分类方法及系统。该方法首先建立包含有标签样本和无标签样本的图像库;然后构建一种卷积神经网络模型,并利用图像库中的有标签样本训练出初始模型;进而将有标签样本与无标签样本一起输入初始模型,提取样本的特征向量,以此特征向量构建一个邻接矩阵Wcnn;接着使用输入样本图像的LBP特征再构建一个邻接矩阵Wlbp;将Wcnn与Wlbp相加得到新的邻接矩阵W,根据W构建一个图,通过标签传播得到无标签样本的伪标签;最后基于初始模型使用图像库中所有样本及其标签训练出最终的模型,用于图像分类。本发明通过引入图像的LBP特征来构建图,使得通过标签传播得到的标签的置信度更高,有利于提高图像分类的准确率。
-