-
公开(公告)号:CN113706643A
公开(公告)日:2021-11-26
申请号:CN202010939063.9
申请日:2020-09-09
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于同形适应学习的头部CT金属伪影校正方法。通过使用17层卷积神经网络,构建深度学习的生成框架;结合使用VGG19模型对CT图像进行特征提取;利用CT连续切片的先验信息和CT结构的相似性,对数据集进行扩充;为了解决医学类数据失准的问题,将改进的抗噪损失用于网络,通过平衡风格损失和内容损失的比重,在逐步迭代的过程中,达到去除金属伪影且保留原始疾病信息的目的;结果评价,在临床数据集和模拟数据集上进行训练和测试,综合评价方法,对模型进行评估。本发明实现了对头部CT伪影的校正,在保留图像细节信息的同时,没有新伪影产生,也没有造成模糊,提高了临床诊断的准确性,具有良好的实用价值。
-
公开(公告)号:CN113706643B
公开(公告)日:2023-06-30
申请号:CN202010939063.9
申请日:2020-09-09
Applicant: 南京邮电大学
IPC: G06T11/00 , G06T5/00 , G06N3/08 , G06N3/0464
Abstract: 本发明公开了一种基于同形适应学习的头部CT金属伪影校正方法。通过使用17层卷积神经网络,构建深度学习的生成框架;结合使用VGG19模型对CT图像进行特征提取;利用CT连续切片的先验信息和CT结构的相似性,对数据集进行扩充;为了解决医学类数据失准的问题,将改进的抗噪损失用于网络,通过平衡风格损失和内容损失的比重,在逐步迭代的过程中,达到去除金属伪影且保留原始疾病信息的目的;结果评价,在临床数据集和模拟数据集上进行训练和测试,综合评价方法,对模型进行评估。本发明实现了对头部CT伪影的校正,在保留图像细节信息的同时,没有新伪影产生,也没有造成模糊,提高了临床诊断的准确性,具有良好的实用价值。
-