-
公开(公告)号:CN115481684A
公开(公告)日:2022-12-16
申请号:CN202211118343.9
申请日:2022-09-14
Applicant: 南京邮电大学
IPC: G06K9/62
Abstract: 本发明提供一种基于时间感知的峰值聚类服务器资源预留方法,通过把数据集中的原始数据按照时间维度进行划分,对划分后的时间片矩阵R,按照用户和服务维度,使用潜在因子模型,从稀疏的矩阵中提取密集的任务LF矩阵P和资源LF矩阵Q;分别使用密度峰值聚类算法进行聚类,将聚类得到的离散值即不可信任务进行去除处理,获得待预测矩阵;使用低秩矩阵分解,进行资源预留的预测,获得预测矩阵;计算平均绝对误差和均方根误差;获得任务预留预测结果最好的资源列表;本发明从时间维度对初始数据进行划分,充分的考虑时间因素对资源预留的影响,并对数据进行了降噪的处理,能够提高资源预留的准确性,并且能够提高资源的利用率。