一种基于证据深度学习的无锚框表面缺陷可信检测方法

    公开(公告)号:CN117974634A

    公开(公告)日:2024-05-03

    申请号:CN202410361714.9

    申请日:2024-03-28

    Abstract: 本发明属于基于计算机视觉的缺陷检测领域,公开了一种基于证据深度学习的无锚框表面缺陷可信检测方法,包括:获取缺陷样本训练数据集;构建基于证据深度学习的无锚框表面缺陷可信检测模型;使用所提出的不确定性自适应加权损失训练模型;获取缺陷样本测试数据集;将测试图像输入已训练的模型中,分别预测缺陷中心证据热力图、缺陷尺寸热力图和离散化误差热力图;使用D‑S理论对缺陷中心证据热力图局部峰值点进行可信融合,结合尺寸和离散化误差来生成最终结果。本发明使用证据深度学习方法建模不确定性,有效缓解现代深度网络过度自信的问题,降低高端装备核心零部件表面缺陷检测时漏检或误检风险。

    一种基于证据深度学习的无锚框表面缺陷可信检测方法

    公开(公告)号:CN117974634B

    公开(公告)日:2024-06-04

    申请号:CN202410361714.9

    申请日:2024-03-28

    Abstract: 本发明属于基于计算机视觉的缺陷检测领域,公开了一种基于证据深度学习的无锚框表面缺陷可信检测方法,包括:获取缺陷样本训练数据集;构建基于证据深度学习的无锚框表面缺陷可信检测模型;使用所提出的不确定性自适应加权损失训练模型;获取缺陷样本测试数据集;将测试图像输入已训练的模型中,分别预测缺陷中心证据热力图、缺陷尺寸热力图和离散化误差热力图;使用D‑S理论对缺陷中心证据热力图局部峰值点进行可信融合,结合尺寸和离散化误差来生成最终结果。本发明使用证据深度学习方法建模不确定性,有效缓解现代深度网络过度自信的问题,降低高端装备核心零部件表面缺陷检测时漏检或误检风险。

Patent Agency Ranking