-
公开(公告)号:CN113285896A
公开(公告)日:2021-08-20
申请号:CN202110479200.X
申请日:2021-04-30
Applicant: 南京邮电大学
IPC: H04L25/02 , H04B17/391 , G06N3/08
Abstract: 本发明公开了基于堆栈式ELM的时变信道预测方法,包括:根据导频获取时域信道状态信息估计值;根据时域信道状态信息估计值构建线下历史信道训练样本集;将历史信道训练样本集输入到神经网络中,利用ELM方法训练,获得神经网络隐藏层输出矩阵;根据隐藏层输出矩阵获得神经网络的输出权值和输出;利用深度为J的堆栈式ELM方法训练神经网络,输出最终特征矩阵,计算隐藏层输出矩阵和初始输出权值;利用线下训练方法进行线上预测,获得样本对应的特征矩阵和隐藏层输出矩阵、最终神经网络输出权重;根据神经网络输出权重获得神经网络的预测信道状态信息。本发明包括线下训练和线上预测两部分,通过这两部分显著提高时变信道预测精度。
-
公开(公告)号:CN113285899A
公开(公告)日:2021-08-20
申请号:CN202110548774.8
申请日:2021-05-20
Applicant: 南京邮电大学
IPC: H04L25/02
Abstract: 本发明公开了一种基于深度学习的时变信道估计方法及系统,通过对网络输入样本进行合理构造,本发明基于单隐藏层神经网络,首先充分地利用历史信道信息中的信道变化特征,以及接收导频信号中的其他特征,并利用最小二乘估计的优势来进一步提高信道估计的性能,其次,本发明利用构造的样本对反向传播神经网络进行线下训练,然后以在线方式实时获取时变信道信息。为了降低计算复杂度,本发明仅采用了接收的导频信号与导频子信道的信息,并对导频子信道采用多项式基扩展模型建模来减少待估计参数进行时变信道估计。本发明可以显著地提高信道估计精度,具有较低的计算复杂度,适合于高速移动场景中时变信道信息的高效获取。
-
公开(公告)号:CN115037578B
公开(公告)日:2023-07-28
申请号:CN202210485320.5
申请日:2022-05-06
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于元学习的OFDM系统中时变信道估计方法、装置、及存储介质,其包括:采集天线上接收到的信号的实时数据;将所采集的信号的实时数据载入预先构建且利用元学习训练好的神经网络模型中,获取时变信道估计结果;神经网络模型训练的过程包括以下步骤:在预先选定数量的具有不同多普勒频移的信道环境中,分别获取频偏补偿后的频域信号,并确定每个频域信号对应的目标信道估计结果;在支撑集上训练神经网络模型并更新基础学习器的网络参数,在查询集上测试神经网络模型并更新元学习器网络参数;对网络参数进行迭代计算,最终更新得到神经网络模型的初始化参数矩阵。本发明能够快速地适应新的信道环境,计算的复杂度较低、估计精度高。
-
公开(公告)号:CN113206809A
公开(公告)日:2021-08-03
申请号:CN202110479456.0
申请日:2021-04-30
Applicant: 南京邮电大学
Abstract: 本发明公开了无线通信技术领域内的一种联合深度学习与基扩展模型的信道预测方法,包括以下步骤:步骤1,根据历史时刻的信道信息获取信道的相关矩阵;步骤2,对相关矩阵进行特征值分解,获得最优基函数;步骤3,利用基扩展模型对信道进行建模;步骤4,基于历史接收的导频信号与最优基函数,获取基系数估计值;步骤5,根据基系数估计值构建训练样本集;步骤6,利用训练样本集训练BP神经网络;步骤7,获得具有最优权重和阈值的信道预测模型;步骤8,基于信道预测模型进行线上预测;步骤9,将基系数预测值转换成频域信道矩阵。本发明具有较低的计算复杂度,且具有较高的预测精度,适用于未来高速移动环境下时变信道信息的高效获取。
-
公开(公告)号:CN113285896B
公开(公告)日:2023-04-07
申请号:CN202110479200.X
申请日:2021-04-30
Applicant: 南京邮电大学
IPC: H04L25/02 , H04B17/391 , G06N3/08
Abstract: 本发明公开了基于堆栈式ELM的时变信道预测方法,包括:根据导频获取时域信道状态信息估计值;根据时域信道状态信息估计值构建线下历史信道训练样本集;将历史信道训练样本集输入到神经网络中,利用ELM方法训练,获得神经网络隐藏层输出矩阵;根据隐藏层输出矩阵获得神经网络的输出权值和输出;利用深度为J的堆栈式ELM方法训练神经网络,输出最终特征矩阵,计算隐藏层输出矩阵和初始输出权值;利用线下训练方法进行线上预测,获得样本对应的特征矩阵和隐藏层输出矩阵、最终神经网络输出权重;根据神经网络输出权重获得神经网络的预测信道状态信息。本发明包括线下训练和线上预测两部分,通过这两部分显著提高时变信道预测精度。
-
公开(公告)号:CN113285899B
公开(公告)日:2022-10-14
申请号:CN202110548774.8
申请日:2021-05-20
Applicant: 南京邮电大学
IPC: H04L25/02
Abstract: 本发明公开了一种基于深度学习的时变信道估计方法及系统,通过对网络输入样本进行合理构造,本发明基于单隐藏层神经网络,首先充分地利用历史信道信息中的信道变化特征,以及接收导频信号中的其他特征,并利用最小二乘估计的优势来进一步提高信道估计的性能,其次,本发明利用构造的样本对反向传播神经网络进行线下训练,然后以在线方式实时获取时变信道信息。为了降低计算复杂度,本发明仅采用了接收的导频信号与导频子信道的信息,并对导频子信道采用多项式基扩展模型建模来减少待估计参数进行时变信道估计。本发明可以显著地提高信道估计精度,具有较低的计算复杂度,适合于高速移动场景中时变信道信息的高效获取。
-
公开(公告)号:CN113206809B
公开(公告)日:2022-11-15
申请号:CN202110479456.0
申请日:2021-04-30
Applicant: 南京邮电大学
Abstract: 本发明公开了无线通信技术领域内的一种联合深度学习与基扩展模型的信道预测方法,包括以下步骤:步骤1,根据历史时刻的信道信息获取信道的相关矩阵;步骤2,对相关矩阵进行特征值分解,获得最优基函数;步骤3,利用基扩展模型对信道进行建模;步骤4,基于历史接收的导频信号与最优基函数,获取基系数估计值;步骤5,根据基系数估计值构建训练样本集;步骤6,利用训练样本集训练BP神经网络;步骤7,获得具有最优权重和阈值的信道预测模型;步骤8,基于信道预测模型进行线上预测;步骤9,将基系数预测值转换成频域信道矩阵。本发明具有较低的计算复杂度,且具有较高的预测精度,适用于未来高速移动环境下时变信道信息的高效获取。
-
公开(公告)号:CN115037578A
公开(公告)日:2022-09-09
申请号:CN202210485320.5
申请日:2022-05-06
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于元学习的OFDM系统中时变信道估计方法、装置、及存储介质,其包括:采集天线上接收到的信号的实时数据;将所采集的信号的实时数据载入预先构建且利用元学习训练好的神经网络模型中,获取时变信道估计结果;神经网络模型训练的过程包括以下步骤:在预先选定数量的具有不同多普勒频移的信道环境中,分别获取频偏补偿后的频域信号,并确定每个频域信号对应的目标信道估计结果;在支撑集上训练神经网络模型并更新基础学习器的网络参数,在查询集上测试神经网络模型并更新元学习器网络参数;对网络参数进行迭代计算,最终更新得到神经网络模型的初始化参数矩阵。本发明能够快速地适应新的信道环境,计算的复杂度较低、估计精度高。
-
-
-
-
-
-
-