-
公开(公告)号:CN110309816B
公开(公告)日:2021-06-11
申请号:CN201910628182.X
申请日:2019-07-12
Applicant: 南京邮电大学
IPC: G06K9/00
Abstract: 本发明公开了一种由粗到精的新生儿面部检测方法与系统。该方法包括以下步骤:建立新生儿面部图像样本集;构建一种包括特征提取、面部边框粗定位和面部边框精定位模块的适用于新生儿面部检测的深度卷积神经网络;用样本集里的样本训练所构建的深度卷积神经网络,得到新生儿面部检测模型;利用新生儿面部检测模型对新输入的测试图像进行新生儿面部检测。本发明针对新生儿面部特点,构建并训练一个深度卷积神经网络模型,提取新生儿面部不同尺度的特征图,并通过两次分类任务及级联的两次回归任务实现由粗定位到精定位的面部检测,可以有效提高新生儿面部检测精度,减少误检、漏检的概率。
-
公开(公告)号:CN110309816A
公开(公告)日:2019-10-08
申请号:CN201910628182.X
申请日:2019-07-12
Applicant: 南京邮电大学
IPC: G06K9/00
Abstract: 本发明公开了一种由粗到精的新生儿面部检测方法与系统。该方法包括以下步骤:建立新生儿面部图像样本集;构建一种包括特征提取、面部边框粗定位和面部边框精定位模块的适用于新生儿面部检测的深度卷积神经网络;用样本集里的样本训练所构建的深度卷积神经网络,得到新生儿面部检测模型;利用新生儿面部检测模型对新输入的测试图像进行新生儿面部检测。本发明针对新生儿面部特点,构建并训练一个深度卷积神经网络模型,提取新生儿面部不同尺度的特征图,并通过两次分类任务及级联的两次回归任务实现由粗定位到精定位的面部检测,可以有效提高新生儿面部检测精度,减少误检、漏检的概率。
-