-
公开(公告)号:CN107705556A
公开(公告)日:2018-02-16
申请号:CN201710779559.2
申请日:2017-09-01
Applicant: 南京邮电大学
IPC: G08G1/01
CPC classification number: G08G1/0129
Abstract: 本发明公开了一种基于支持向量机和BP神经网络结合的短时交通流预测方法,首先历史交通流数据的采集,利用归一化方法对交通流数据进行预处理,得到归一化后的数据集,将归一化后的数据集划分为训练数据集和测试数据集;然后利用SVM模型对测试集进行预测分析,得到预测结果,使用BP神经网络模型对残差序列进行分析,得到修正后的残差序列;将SVM模型所得到的预测结果与BP神经网络模型所得到的修正残差序列相加,得到最终的预测数据;将测试数据集和预测数据进行比较,分析误差。本发明采用支持向量机和BP神经网络相结合的交通流预测方法,通过支持向量机模型对样本数据进行分析,使用较少的数据集得到较高的预测精确度,减少了计算量和计算难度。