-
公开(公告)号:CN117152438A
公开(公告)日:2023-12-01
申请号:CN202311200605.0
申请日:2023-09-18
Applicant: 南京邮电大学
IPC: G06V10/26 , G06V10/82 , G06V10/44 , G06N3/0495 , G06N3/045 , G06N3/0464 , G06N3/096 , G06N3/084
Abstract: 本发明公开了一种基于改进DeepLabV3+网络的轻量级街景图像语义分割方法,属于计算机技术领域;包括以下步骤:对输入的图像进行预处理;将预处理的后图像输入到采用DY‑MobileNetV2网络作为骨干网络构建的分割模型,对输入的图像进行像素分类;分割模型包括用于特征提取的DY‑MobileNetV2网络、金字塔空洞卷积层DASPP、DeepLabV3+网络模型的编、解码架构、以及作为知识蒸馏教师网络的SAM模型;输出分类结果,将每个像素所属的语义类别标注在原始图像上,形成语义分割图像;采用平均交并比计算对分割后的图像进行验证。本发明通过采用DY‑MobileNetV2网络替换原本DeepLabV3+中的Xception,对金字塔空洞卷积层DASPP进行改进,增强网络的特征表达能力,降低资源消耗;提升参数运算速度,增加参数计算量,从而提升网络分割的精确度。
-
公开(公告)号:CN118869500A
公开(公告)日:2024-10-29
申请号:CN202410855902.7
申请日:2024-06-28
Applicant: 南京邮电大学
Abstract: 本发明属于恶劣信道通信网络传输领域,公开了一种基于马尔可夫过程的通信决策模型的构建方法,包括:获取通信终端的实时通信网络环境;基于马尔可夫决策过程构建数据传输模型,将获取到的实时通信网络环境作为状态集,将对应可以执行的数据传输方式作为动作集,结合实时网络环境检测模块构建数据传输方式的决策模型。本发明相较于传统改善网络环境的方法,在网络检测的实时性,以及在恶劣信道实现信息完整或涵盖全部重要信息内容方面取得新的突破,实现了在通信网络质量较差的情况下,正确选择数据传输方式,以保证在通信过程中,通信内容的传输质量的稳定以及避免了信道的浪费。
-
公开(公告)号:CN117746252A
公开(公告)日:2024-03-22
申请号:CN202311747742.6
申请日:2023-12-19
Applicant: 南京邮电大学
IPC: G06V20/13 , G06V10/764 , G06V10/82 , G06N3/0464 , G06V10/25 , G06V10/774
Abstract: 本发明属于计算机图像处理技术领域,涉及一种基于改进的轻量型YOLOv7的山体滑坡检测方法,首先,采集山体卫星图像并使用超分辨率算法GAN对山体卫星图像进行预处理,之后对图像采用拼接、旋转、腐蚀操作,并为山体卫星图标注真实框以及所属类别;其次,利用轻量级网络MobileNetv3替换原YOLOv7特征提取主干网络,之后,将模型添加小目标检测层,并添加HAT注意力机制,模拟不同天气条件,反复进行训练,得到改进的轻量型YOLOv7模型,对山体卫星图像检测得到山体滑坡检测结果;本发明提高了图像的分辨率;解决正负样本分布不均匀的问题;具备高效的小目标检测能力,能够更好地适应复杂多变的天气条件。
-
公开(公告)号:CN117058502A
公开(公告)日:2023-11-14
申请号:CN202310871137.3
申请日:2023-07-14
Applicant: 南京邮电大学
Abstract: 本发明属于行人重识别方法技术领域,公开了一种基于CLIP深度度量学习的文本到图像的跨模态行人重识别方法,首先构建文本图像数据库并进行预处理,对图片以及对应图片的文本描述两两配对,形成图片文本描述和对应行人图片的文本与图片模态的配对,然后对每一个文本描述和对应的行人图片使用对应的神经网络进行特征的学习,同时让两种模态的网络结构进行参数共享,将两种模态得到的特征投影到公共空间中,实现全局对齐视觉和文本嵌入,通过相似分布匹配,对图像‑文本相似分布和归一化标签匹配分布之间的模态差异最小化。本发明对模态内特征分布更为均匀,更有效的提取两种模态的特征,提高行人图片识别的精度,具有更好的跨模态分类性能。
-
公开(公告)号:CN116703779A
公开(公告)日:2023-09-05
申请号:CN202310799116.5
申请日:2023-07-03
Applicant: 南京邮电大学
IPC: G06T5/00 , G06V10/30 , G06V10/80 , G06V10/82 , G06N3/0464
Abstract: 本发明公开了一种基于AFF特征融合的图像去噪方法,属于多尺度图像去噪技术领域;该方法包括以下步骤:步骤S1:数据预处理;步骤S2:构建高斯合成去噪模型;在MRF‑Net骨干网络架构的基础上,构建新的高斯合成去噪模型DDMFFNet;步骤S3:对构建高斯合成去噪模型进行训练;步骤S4:测试数据集输入到训练好的高斯合成去噪模型DDMFFNett中,得到去噪后的图像。本发明通过对MRF‑Net模型的整体网络架构进行优化,利用改进的AFF特征融合模块,提取不同特征图像的信息,增强信息在不同层次的传输和表达能力,利用密集连接模块缓解梯度消失的问题,使特征的传输更加有效,增强网络的特征提取能力,增强特征重用能力,并且减少了冗余的参数,提升图像的去噪效果。
-
公开(公告)号:CN118840551A
公开(公告)日:2024-10-25
申请号:CN202410885412.1
申请日:2024-07-03
Applicant: 南京邮电大学
IPC: G06V10/26 , G06V20/17 , G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82
Abstract: 基于改进MobileOne的轻量级无人机目标语义分割方法,首先,使用MobileOne轻量级骨干网络替代传统的xception模块,以降低参数量和提升计算效率。其次,引入金字塔池模块和EMA模块,以处理多尺度特征,增强模型对不同尺度目标的识别能力,特别是EMA模块通过跨维交互进一步聚合并行分支的输出特征,解决通道降维可能带来的副作用。同时,UAFM利用注意力模块生成权重,通过融合不同层级的特征图来提升分割精度。最后,通过模型压缩和加速技术,将优化后的模型高效部署在无人机的边缘处理器上。在算力受限且满足FPS大于30的实时要求下,与其他轻量化语义分割方法相比,提出的方法精度至少提升3.88%,准确度至少提高2.01%,优势显著。
-
-
-
-
-