基于对比学习的半监督卷积神经网络的医学图像分割方法

    公开(公告)号:CN114266739B

    公开(公告)日:2025-05-02

    申请号:CN202111527979.4

    申请日:2021-12-14

    Abstract: 本发明提供一种基于对比学习的半监督卷积神经网络的医学图像分割方法,主要针对医学图像中特定组织结构图像的定位分割,具体包括以下步骤,(1)输入医学图像数据,对医学图像数据进行预处理,提取正负样本,划分数据集,得到训练集数据、验证集数据和测试集数据;(2)构建对比学习卷积神经网络分割模型,(3)构建基于对比学习的半监督医学图像分割网络模型,(4)将所获得的训练模型对测试集数据进行预测,得到最后的分割预测图像。本发明有效地实现了医学图像处理半监督分割,一定程度上解决了医学图像数据集较少时的特定区域分割问题,更好地提高医学图像分割上的准确性。

    基于对比学习的半监督卷积神经网络的医学图像分割方法

    公开(公告)号:CN114266739A

    公开(公告)日:2022-04-01

    申请号:CN202111527979.4

    申请日:2021-12-14

    Abstract: 本发明提供一种基于对比学习的半监督卷积神经网络的医学图像分割方法,主要针对医学图像中特定组织结构图像的定位分割,具体包括以下步骤,(1)输入医学图像数据,对医学图像数据进行预处理,提取正负样本,划分数据集,得到训练集数据、验证集数据和测试集数据;(2)构建对比学习卷积神经网络分割模型,(3)构建基于对比学习的半监督医学图像分割网络模型,(4)将所获得的训练模型对测试集数据进行预测,得到最后的分割预测图像。本发明有效地实现了医学图像处理半监督分割,一定程度上解决了医学图像数据集较少时的特定区域分割问题,更好地提高医学图像分割上的准确性。

Patent Agency Ranking