-
公开(公告)号:CN110264494A
公开(公告)日:2019-09-20
申请号:CN201910541432.6
申请日:2019-06-21
Applicant: 南京邮电大学
IPC: G06T7/20
Abstract: 本发明提出了一种基于相关性分析的逆稀疏表示的灰度-热目标跟踪方法,包括以下步骤:采用粒子滤波器来产生目标候选矩阵Y1和Y2;提出一种基于逆稀疏表示的灰度-热跟踪框架,并通过该模型来联合估计Y1和Y2目标候选编码,得到逆稀疏表示矩阵U1和U2;将U1和U2放入支持向量机进行判别,区分最佳目标和目标候选。本发明将典型相关性分析和逆稀疏表示集成到统一的联合优化模型中,通过探索公共子空间中灰度和热视频序列之间的相似性来突出跟踪目标的有用信息,确保从不良照明场景中获得针对目标候选者的鲁棒编码结果;提出了一种交替重构算法来解决联合优化问题,具有快速收敛性及较强的鲁棒性;使用支持向量机对目标候选的编码结果进行判别,提高跟踪速度。