-
公开(公告)号:CN108197650B
公开(公告)日:2021-10-26
申请号:CN201711488221.8
申请日:2017-12-30
Applicant: 南京理工大学
Abstract: 本发明公开了一种局部相似性保持的高光谱图像极限学习机聚类方法,其步骤为:组织高光谱像元矩阵;计算隐层神经元的线性随机响应;计算隐层神经元的非线性激活值;隐层特征数据三维重组;空间引导滤波;滤波后的隐层特征数据二维重组;构造局部相似性保持正则项及优化模型;计算局部相似性保持投影特征,并进行K‑means聚类得到最终的聚类标签。本发明在传统极限学习机的基础上,通过引导滤波综合局部邻域的高光谱图像空间信息,并充分利用高光谱的光谱局部相似性,通过模型优化计算具有局部保持性的投影,提取空谱联合信息,提高了聚类精度,降低了计算复杂度,可广泛应用于国土资源、矿产调查和精准农业领域的高光谱无监督分类。
-
公开(公告)号:CN108197650A
公开(公告)日:2018-06-22
申请号:CN201711488221.8
申请日:2017-12-30
Applicant: 南京理工大学
Abstract: 本发明公开了一种局部相似性保持的高光谱图像极限学习机聚类方法,其步骤为:组织高光谱像元矩阵;计算隐层神经元的线性随机响应;计算隐层神经元的非线性激活值;隐层特征数据三维重组;空间引导滤波;滤波后的隐层特征数据二维重组;构造局部相似性保持正则项及优化模型;计算局部相似性保持投影特征,并进行K-means聚类得到最终的聚类标签。本发明在传统极限学习机的基础上,通过引导滤波综合局部邻域的高光谱图像空间信息,并充分利用高光谱的光谱局部相似性,通过模型优化计算具有局部保持性的投影,提取空谱联合信息,提高了聚类精度,降低了计算复杂度,可广泛应用于国土资源、矿产调查和精准农业领域的高光谱无监督分类。
-
公开(公告)号:CN107292258B
公开(公告)日:2020-09-18
申请号:CN201710448927.5
申请日:2017-06-14
Applicant: 南京理工大学
Abstract: 本发明公开了一种基于双边加权调制与滤波的高光谱图像低秩表示聚类方法,包括以下步骤:计算高光谱图像的低秩表示系数;联合光谱与低秩表示系数的相似度,计算双边加权矩阵;采用双边加权矩阵调制低秩表示系数;对调制的低秩表示系数进行双边滤波;利用滤波后的低秩表示系数构建相似性图;将相似性图用于谱聚类得到最终的聚类结果。本发明充分利用了高光谱的光谱相似性和空间结构信息,与传统的子空间聚类方法相比,聚类精度高、对噪声的鲁棒性高;可广泛应用于国土资源、矿产调查和精准农业领域的无监督分类。
-
公开(公告)号:CN107292258A
公开(公告)日:2017-10-24
申请号:CN201710448927.5
申请日:2017-06-14
Applicant: 南京理工大学
Abstract: 本发明公开了一种基于双边加权调制与滤波的高光谱图像低秩表示聚类方法,包括以下步骤:计算高光谱图像的低秩表示系数;联合光谱与低秩表示系数的相似度,计算双边加权矩阵;采用双边加权矩阵调制低秩表示系数;对调制的低秩表示系数进行双边滤波;利用滤波后的低秩表示系数构建相似性图;将相似性图用于谱聚类得到最终的聚类结果。本发明充分利用了高光谱的光谱相似性和空间结构信息,与传统的子空间聚类方法相比,聚类精度高、对噪声的鲁棒性高;可广泛应用于国土资源、矿产调查和精准农业领域的无监督分类。
-
-
-