-
公开(公告)号:CN111031264B
公开(公告)日:2021-10-08
申请号:CN201911219484.8
申请日:2019-11-29
Applicant: 南京理工大学
Abstract: 本发明公开了一种基于透射式红外孔径编码成像系统及其超分辨方法,由聚光透镜、变倍透镜、补偿透镜、场镜、会聚透镜、双缝物理孔径光阑、相机组成,通过拍摄一系列低分辨率图像后在傅里叶域进行凸集投影迭代,直至收敛,即可获得超分辨图像,减少像素化。本发明不需任何机械扫描装置,结构紧凑,测量快速,操作简易,可稳定精确测量;采用透射式编码成像系统可减少入射光的损失,提高成像质量;能够成功地实现在红外波段的大视场超分辨成像,超越由相机奈奎斯特采样频率所限制的分辨率,可将目标成像分辨率提高到镜头的衍射极限。
-
公开(公告)号:CN111694016A
公开(公告)日:2020-09-22
申请号:CN202010490965.9
申请日:2020-06-02
Applicant: 南京理工大学
Abstract: 本发明提出了一种非干涉合成孔径超分辨成像重构方法:以圆形采样方案采集待测目标的低分辨率图像;对低分辨率图像进行配准和裁剪,随后对裁剪出来的方形图像进行去噪处理;将拍摄到的中心子孔径的低分辨率图像进行插值放大作为初始高分辨率图像;从高分辨率频谱上截取相应的子孔径,并用模拟退火算法校正当前子孔径的位置;利用基于自适应步长的最优化求解算法对当前子孔径的频谱和孔径函数进行更新,获得待测目标的高分辨率频谱信息。本发明使用圆形采样方案,显著提高了图像采集效率,在重构过程中使用模拟退火算法对子孔径的定位误差进行校正,使用最优化求解算法对子孔径进行更新,极大提高重构结果精度。
-
公开(公告)号:CN111031264A
公开(公告)日:2020-04-17
申请号:CN201911219484.8
申请日:2019-11-29
Applicant: 南京理工大学
Abstract: 本发明公开了一种基于透射式红外孔径编码成像系统及其超分辨方法,由聚光透镜、变倍透镜、补偿透镜、场镜、会聚透镜、双缝物理孔径光阑、相机组成,通过拍摄一系列低分辨率图像后在傅里叶域进行凸集投影迭代,直至收敛,即可获得超分辨图像,减少像素化。本发明不需任何机械扫描装置,结构紧凑,测量快速,操作简易,可稳定精确测量;采用透射式编码成像系统可减少入射光的损失,提高成像质量;能够成功地实现在红外波段的大视场超分辨成像,超越由相机奈奎斯特采样频率所限制的分辨率,可将目标成像分辨率提高到镜头的衍射极限。
-
公开(公告)号:CN111694016B
公开(公告)日:2023-10-20
申请号:CN202010490965.9
申请日:2020-06-02
Applicant: 南京理工大学
Abstract: 本发明提出了一种非干涉合成孔径超分辨成像重构方法:以圆形采样方案采集待测目标的低分辨率图像;对低分辨率图像进行配准和裁剪,随后对裁剪出来的方形图像进行去噪处理;将拍摄到的中心子孔径的低分辨率图像进行插值放大作为初始高分辨率图像;从高分辨率频谱上截取相应的子孔径,并用模拟退火算法校正当前子孔径的位置;利用基于自适应步长的最优化求解算法对当前子孔径的频谱和孔径函数进行更新,获得待测目标的高分辨率频谱信息。本发明使用圆形采样方案,显著提高了图像采集效率,在重构过程中使用模拟退火算法对子孔径的定位误差进行校正,使用最优化求解算法对子孔径进行更新,极大提高重构结果精度。
-
-
-