-
公开(公告)号:CN119446166A
公开(公告)日:2025-02-14
申请号:CN202411674055.0
申请日:2024-11-21
Applicant: 南京工程学院
Abstract: 本发明公开了一种基于融合空间特征的多通道语音增强方法,首先从带噪多通道语音中分别提取多通道复频谱特征和融合空间特征,再将提取的多通道复频谱特征和融合空间特征输入深度神经网络进行处理并设定处理目标为理想复值比率掩蔽,再构建基于复卷积编码器解码器结构的深度复卷积循环语音增强网络,再利用深度复卷积循环语音增强网络对多通道复频谱特征和融合空间特征进行处理,输出预测复值比率掩蔽。本发明充分整合光谱信息、方向特征、通道间特征和相关系数特征,并对动态声源进行空间建模,使得网络对于语音信号的理解和处理能力远超传统方法,能够有效应对复杂多变的语音场景,有效地提升静态场景和动态场景下的语音增强效果。
-
公开(公告)号:CN116453547A
公开(公告)日:2023-07-18
申请号:CN202210620231.7
申请日:2022-06-02
Applicant: 南京工程学院
IPC: G10L25/60 , G10L25/30 , H04R25/00 , G06F18/2415 , G06N3/0464 , G06N3/045 , G06N3/0442 , G06N3/047 , G06N3/048 , G06N3/08
Abstract: 本发明公开基于听损分类的助听器语音质量自评价方法,包括构建由帧级特征提取网络、听损分类子网络、质量预测子网络构成的语音质量自评估网络;基于助听器处理后信号计算浅层特征,利用帧级特征提取网络学习失真信号的深层表示,从而获得帧级特征;形状重置后的帧级特征分别通过听损分类子网络和质量预测子网络得到失真语音补偿前听力损失程度的分类情况和质量评分的预测值。本发明依照多任务训练策略,将预测失真信号的质量评分作为主任务,预测失真信号的质量分类作为辅任务,通过训练时损失函数的权重因子调节主、辅任务在网络中的重要程度,提高了无参考助听器语音质量评价方法的准确性,简化了处理过程。
-