-
公开(公告)号:CN110795511A
公开(公告)日:2020-02-14
申请号:CN201911045361.7
申请日:2019-10-30
Applicant: 南京工业大学
Abstract: 本发明提出了一种基于云模型的知识图谱表示方法,包括以下步骤:获取数据集,按比例随机分为训练集和测试集;将训练集中每一个关系划分为多个语义,得到该关系的高斯混合模型;计算每一个关系中最能表达该关系的主语义;基于云模型计算每个主语义的语言值的坐标及其确定程度。本发明提出一种基于云模型的知识图谱表示方法,目标是在关系向量存在多语义性的前提下,获取最能表达该关系向量语义的的向量值,同时引入不确定性的思想,在新的评分函数中结合确定程度,使知识图谱的表示更加准确。