一种基于高斯混合模型的视频中异常行为在线检测方法

    公开(公告)号:CN104156979A

    公开(公告)日:2014-11-19

    申请号:CN201410361276.2

    申请日:2014-07-25

    Applicant: 南京大学

    Abstract: 本发明公开了一种基于高斯混合模型的视频中异常行为在线检测方法,首先从视频中提取原图像序列,对原图像序列中的每张图像执行步骤一至步骤四:步骤一,合成原图像的低分辨率图像;步骤二,分别计算原图像和低分辨率图像中的光流;步骤三,分别按照原图像和低分辨率图像各自的划分方法将这两种图像划分成图像块;步骤四,为原图像和低分辨率图像中每个图像块计算对应的高斯混合模型;步骤五,计算图像块序列的标准高斯混合模型;步骤六,将原图像序列的下一张图像作为待检测图像,按照步骤1至步骤4计算待检测图像中每个图像块的高斯混合模型;步骤七,判断待检测图像中每个图像块是否存在异常行为;步骤八,标记异常图像块并输出。

    一种基于高斯混合模型的视频中异常行为在线检测方法

    公开(公告)号:CN104156979B

    公开(公告)日:2016-09-14

    申请号:CN201410361276.2

    申请日:2014-07-25

    Applicant: 南京大学

    Abstract: 本发明公开了一种基于高斯混合模型的视频中异常行为在线检测方法,首先从视频中提取原图像序列,对原图像序列中的每张图像执行步骤一至步骤四:步骤一,合成原图像的低分辨率图像;步骤二,分别计算原图像和低分辨率图像中的光流;步骤三,分别按照原图像和低分辨率图像各自的划分方法将这两种图像划分成图像块;步骤四,为原图像和低分辨率图像中每个图像块计算对应的高斯混合模型;步骤五,计算图像块序列的标准高斯混合模型;步骤六,将原图像序列的下一张图像作为待检测图像,按照步骤1至步骤4计算待检测图像中每个图像块的高斯混合模型;步骤七,判断待检测图像中每个图像块是否存在异常行为;步骤八,标记异常图像块并输出。

Patent Agency Ranking