一种基于公共和私有信息挖掘的众包测试报告融合方法

    公开(公告)号:CN113361198B

    公开(公告)日:2023-11-03

    申请号:CN202110641240.X

    申请日:2021-06-09

    Applicant: 南京大学

    Abstract: 一种基于公共和私有信息挖掘的众包测试报告融合方法,1)进行特征映射,每个模态中包括所有模态共享的公共信息,以及该模态的私有信息,将原始特征空间中抽取的模态映射为同一维度的公共向量和私有向量;2)对不同模态所包含的所有模态共享的公共信息和每个模态的私有信息进行获取;3)进行模态关系挖掘,将得到d维公共信息Ci和私有信息Sim依次输入到LSTM中进行处理;4)进行标签预测,在多标签学习中,每种模态都有其对多标签预测的特定贡献,利用储存在LSTM记忆单元中的不同模态的信息获取标签之间的关系。本发明能够学习所有模态的低维公共表示,并通过强制正交约束提取每个模态的区别信息,同时,将公共表示作为一种新的模态加入到特定的模态序列中,实现基于提取的模态序列挖掘标签相关性。

    一种基于噪声标签学习的众包获取标签数据清洗方法

    公开(公告)号:CN113361201B

    公开(公告)日:2023-08-25

    申请号:CN202110645466.7

    申请日:2021-06-10

    Applicant: 南京大学

    Abstract: 本发明公开了一种基于噪声标签学习的众包获取标签数据清洗方法,在模型热启动阶段,使用带有噪声的标签数据初步训练深度模型;在噪声分离阶段,通过模型对训练数据进行预测,计算噪声标签与预测类别间的损失,采用高斯混合模型拟合损失的分布,得到各个数据在属于均值较小子分布的概率,依据该概率的大小将数据分为纯净数据和噪声数据两部分;在重新训练阶段,使用有更大概率为纯净数据的一部分重新训练模型;最后根据深度模型中数据损失的大小进行噪声清洗;本发明对众包获取的带噪声标签数据进行清洗,可大幅提高众包获取数据的质量;并且结合了深度学习模型的拟合能力,可以纠正特征与标签依赖关系复杂时的噪声标签。

    一种基于噪声标签学习的众包获取标签数据清洗方法

    公开(公告)号:CN113361201A

    公开(公告)日:2021-09-07

    申请号:CN202110645466.7

    申请日:2021-06-10

    Applicant: 南京大学

    Abstract: 本发明公开了一种基于噪声标签学习的众包获取标签数据清洗方法,在模型热启动阶段,使用带有噪声的标签数据初步训练深度模型;在噪声分离阶段,通过模型对训练数据进行预测,计算噪声标签与预测类别间的损失,采用高斯混合模型拟合损失的分布,得到各个数据在属于均值较小子分布的概率,依据该概率的大小将数据分为纯净数据和噪声数据两部分;在重新训练阶段,使用有更大概率为纯净数据的一部分重新训练模型;最后根据深度模型中数据损失的大小进行噪声清洗;本发明对众包获取的带噪声标签数据进行清洗,可大幅提高众包获取数据的质量;并且结合了深度学习模型的拟合能力,可以纠正特征与标签依赖关系复杂时的噪声标签。

    一种基于公共和私有信息挖掘的众包测试报告融合方法

    公开(公告)号:CN113361198A

    公开(公告)日:2021-09-07

    申请号:CN202110641240.X

    申请日:2021-06-09

    Applicant: 南京大学

    Abstract: 一种基于公共和私有信息挖掘的众包测试报告融合方法,1)进行特征映射,每个模态中包括所有模态共享的公共信息,以及该模态的私有信息,将原始特征空间中抽取的模态映射为同一维度的公共向量和私有向量;2)对不同模态所包含的所有模态共享的公共信息和每个模态的私有信息进行获取;3)进行模态关系挖掘,将得到d维公共信息Ci和私有信息Sim依次输入到LSTM中进行处理;4)进行标签预测,在多标签学习中,每种模态都有其对多标签预测的特定贡献,利用储存在LSTM记忆单元中的不同模态的信息获取标签之间的关系。本发明能够学习所有模态的低维公共表示,并通过强制正交约束提取每个模态的区别信息,同时,将公共表示作为一种新的模态加入到特定的模态序列中,实现基于提取的模态序列挖掘标签相关性。

Patent Agency Ranking