基于强化学习的多目标复杂交通场景下自动驾驶解决方法

    公开(公告)号:CN114701517A

    公开(公告)日:2022-07-05

    申请号:CN202210370991.7

    申请日:2022-04-07

    Applicant: 南京大学

    Inventor: 迟宇翔 范彧

    Abstract: 本发明公开一种基于强化学习的多目标复杂交通场景下自动驾驶解决方法,该方法可以使用一套强化学习自动驾驶建模方法处理所有交通场景,具有较好的通用性。强化学习综合建模基于传统强化学习框架,使用环境感知信息及结合人类知识提取的特征量作为观测空间。模型训练基于时变训练策略,提高训练速度和策略应用的泛化性。为对其形式安全性作进一步保障,还提出了基于长短时记忆(LSTM)网络的危险动作识别器与基于人类知识体的规则约束器,从环境中采样并训练危险动作识别器,使车辆具备识别危险动作与危险场景的能力,并针对特定情形设计规则约束对输出动作加以限制,可以大大提高安全性,减少碰撞次数,以保障车辆的行驶安全。

    一种基于对抗学习的数据隐私保护方法

    公开(公告)号:CN115936958A

    公开(公告)日:2023-04-07

    申请号:CN202210372873.X

    申请日:2022-04-11

    Applicant: 南京大学

    Inventor: 范彧 迟宇翔 俞扬

    Abstract: 本发明公开了一种基于对抗学习的数据隐私保护方法,将基于深度生成对抗网络的换脸模型作为被攻击模型,提出一种能控制攻击效果的对抗攻击方法,从人脸图像的语义表示层面出发,实现攻击后生成可控制的具有语义特征的图片的方法;利用图像的语义可分解性,通过串联被攻击模型与语义判别器,修改语义标签来同时达成原始待保护图像的微量修改与生成图像的语义层面上的改变;在给定的人脸图像上添加扰动以使换脸模型作用于该人脸图像时所生成的换脸图像发生语义层面上的人脸外观属性明显改变,导致换脸失败。

Patent Agency Ranking