-
公开(公告)号:CN103390063A
公开(公告)日:2013-11-13
申请号:CN201310328671.6
申请日:2013-07-31
Applicant: 南京大学
Abstract: 本发明公开了基于蚁群算法和概率超图的相关反馈图像检索方法,包括训练和检索两个阶段;所述训练阶段包括如下步骤:提取图像底层特征;字典学习;图像库图像高层表示;所述检索阶段包括以下步骤:提取示例图像的底层特征;示例图像高层表示;构造亲和力矩阵;初始化或更新信息素矩阵:对图像库中每一示例图像的检索结果,标注正相关图像和负相关图像,进一步计算语义信息素矩阵;计算亲和力增强概率:利用蚁群算法增强亲和力矩阵;构建超图;返回此轮检索结果,检索结束,或更新信息素矩阵开始下一轮检索。本发明为图像检索引入了高效、准确的图像检索技术,具有较高的使用价值。
-
公开(公告)号:CN103116762A
公开(公告)日:2013-05-22
申请号:CN201310091623.X
申请日:2013-03-20
Applicant: 南京大学
IPC: G06K9/62
Abstract: 本发明公开了基于自调制字典学习的图像分类方法,包含如下步骤:训练阶段:步骤1,局部特征抽取;对于训练图像集中的每一幅训练图像进行局部特征描述子抽取生成训练图像集的局部特征集合;步骤2,自调制字典学习;步骤3,训练图像表示:包含特征稀疏编码和图像空间聚合两个子步骤。步骤4,分类模型学习;步骤5,局部特征抽取;步骤6,待分类图像表示;步骤7,模型预测。本发明为字典学习引入了合理的顺序机制,设计了一套自调制机制的字典学习方法,并结合图像分类进行分析验证,最终提高图像分类的准确度。
-
公开(公告)号:CN103116766B
公开(公告)日:2015-11-18
申请号:CN201310090274.X
申请日:2013-03-20
Applicant: 南京大学
IPC: G06K9/66
Abstract: 本发明公开了基于增量神经网络和子图编码的图像分类方法,包含如下步骤:局部特征抽取;增量码书网络学习;基于子图的特征编码;图像空间聚合;分类器学习及模型预测;本发明能够高效地学习码书,同时保留视觉单词之间的空间关系,很大程度上缩减了传统算法的时间复杂性,此外,本发明中基于子图的特征编码能充分利用视觉单词之间的空间关系进行特征编码,抽取更加丰富的语义信息,并最终使分类系统在提升计算效率的同时,获得优异的分类性能,因此具有较高的使用价值。
-
公开(公告)号:CN103116762B
公开(公告)日:2015-10-14
申请号:CN201310091623.X
申请日:2013-03-20
Applicant: 南京大学
IPC: G06K9/62
Abstract: 本发明公开了基于自调制字典学习的图像分类方法,包含如下步骤:训练阶段:步骤1,局部特征抽取;对于训练图像集中的每一幅训练图像进行局部特征描述子抽取生成训练图像集的局部特征集合;步骤2,自调制字典学习;步骤3,训练图像表示:包含特征稀疏编码和图像空间聚合两个子步骤。步骤4,分类模型学习;步骤5,局部特征抽取;步骤6,待分类图像表示;步骤7,模型预测。本发明为字典学习引入了合理的顺序机制,设计了一套自调制机制的字典学习方法,并结合图像分类进行分析验证,最终提高图像分类的准确度。
-
公开(公告)号:CN103390063B
公开(公告)日:2016-08-10
申请号:CN201310328671.6
申请日:2013-07-31
Applicant: 南京大学
Abstract: 本发明公开了基于蚁群算法和概率超图的相关反馈图像检索方法,包括训练和检索两个阶段;所述训练阶段包括如下步骤:提取图像底层特征;字典学习;图像库图像高层表示;所述检索阶段包括以下步骤:提取示例图像的底层特征;示例图像高层表示;构造亲和力矩阵;初始化或更新信息素矩阵:对图像库中每一示例图像的检索结果,标注正相关图像和负相关图像,进一步计算语义信息素矩阵;计算亲和力增强概率:利用蚁群算法增强亲和力矩阵;构建超图;返回此轮检索结果,检索结束,或更新信息素矩阵开始下一轮检索。本发明为图像检索引入了高效、准确的图像检索技术,具有较高的使用价值。
-
公开(公告)号:CN103116766A
公开(公告)日:2013-05-22
申请号:CN201310090274.X
申请日:2013-03-20
Applicant: 南京大学
IPC: G06K9/66
Abstract: 本发明公开了基于增量神经网络和子图编码的图像分类方法,包含如下步骤:局部特征抽取;增量码书网络学习;基于子图的特征编码;图像空间聚合;分类器学习及模型预测;本发明能够高效地学习码书,同时保留视觉单词之间的空间关系,很大程度上缩减了传统算法的时间复杂性,此外,本发明中基于子图的特征编码能充分利用视觉单词之间的空间关系进行特征编码,抽取更加丰富的语义信息,并最终使分类系统在提升计算效率的同时,获得优异的分类性能,因此具有较高的使用价值。
-
-
-
-
-