-
公开(公告)号:CN118709087A
公开(公告)日:2024-09-27
申请号:CN202410758487.3
申请日:2024-06-13
Applicant: 南京大学
IPC: G06F18/2431 , G06F18/214 , G06N3/0499 , G06N3/0895 , H04L9/40
Abstract: 本发明公开一种基于弱监督持续学习的边缘设备加密流量分类方法,首先获取已有的真实加密流量数据,包括少量的有标记数据和大量的无标记数据;随机初始化一个加密流量分类模型,然后利用当前加密流量数据训练模型并存储少量的核心有标记数据;当出现一批新类别的加密流量时,在旧模型基础上动态地分配计算资源分别用于使用新类流量的少量标注的有标记数据训练模型,充足的无标记数据训练模型以及所存储的其他旧类流量的核心有标记加密流量数据训练模型,并保存少量的核心有标记数据。本发明缓解标记数据的需求压力并解决新旧类别加密流量无法同时获得的难点,并且在实施过程中对资源要求较低且能充分利用有限的资源配额,易于在边缘设备进行部署。