基于多标签模型的帕金森病证型的辅助预测方法

    公开(公告)号:CN104794339A

    公开(公告)日:2015-07-22

    申请号:CN201510186253.7

    申请日:2015-04-17

    Applicant: 南京大学

    Abstract: 本发明涉及一种基于多标签模型的帕金森病证型的辅助预测方法,包括预测模型的构建、均衡性评估和挖掘预测阶段处理模块;预测模型的构建模块:选定一个主证;选取K个次证;将主证和K个次证组成新的证型集;评估该证型集的均衡性;若均衡性满足条件,则确定了主证与次证的关联性,否则返回b;将证型集作为训练数据构建一个多标签模型;均衡性评估,将得到的证型集进行组合;统计证型组合的数量和出现的频率;根据信息熵公式,计算该证型集的熵值;结束;预测阶段,将给定的待预测数据传给得到模型进行分类;将所有模型的分类结果进行投票,得到最终预测结果。该方法解决了多标签分类算法在类别稀疏和不均衡的情况下预测不准确的问题。

Patent Agency Ranking