一种全球开放数据库中机场空间位置的验证方法

    公开(公告)号:CN112395998A

    公开(公告)日:2021-02-23

    申请号:CN202011306320.1

    申请日:2020-11-19

    申请人: 南京大学

    摘要: 本发明涉及一种使用深度学习的跑道检测对全球开放数据库中机场空间位置的验证方法,包含以下步骤:第一步、机场数据融合——融合OAC、GNO和GNS+GNIS三种全球机场位置数据集以获取更完整的数据集;第二步、深度学习模型训练——训练两种深度学习模型;第三步、机场影像验证——将以上两个已训练的模型结合,验证融合数据集影像中所有机场的位置点。本发明提出的验证方法在测试数据集上表现良好,准确率为95.8%,召回率为95.8%。当结果得分阈值设置为0.65时,全球共29259个机场点位通过验证。同时,对验证结果做了人工抽样校验,本发明对样本的验证精度达到了91%,且速度是人工的15倍。结果显示,本发明可以快速、可靠的辅助验证全球机场空间位置,并为其他遥感目标空间位置验证提供了流程思路。