-
公开(公告)号:CN113282747B
公开(公告)日:2023-07-18
申请号:CN202110465097.3
申请日:2021-04-28
Applicant: 南京大学
Abstract: 本发明公开一种基于自动机器学习算法选择的文本分类方法,基于级联式自动机器学习的思想,从多种机器学习算法中为文本分类任务配置最优算法,包括:(1)采用文本向量嵌入方法将文本语料数据编码成向量表示,生成文本分类数据集;(2)利用多摇臂赌博机算法从多个机器学习分类算法中选择一个算法;(3)利用超参优化方法自动为所选择的算法搜索一组超参数;(4)基于搜索到的超参数初始化相应算法的超参,并在文本分类数据集上训练模型;(5)重复步骤(2)到步骤(4),直到达到设定的迭代次数,将训练得到的多个分类模型中预测性能最好的模型用于文本分类任务。本方法能自动的为任务文本训练一个鲁棒的分类模型。
-
公开(公告)号:CN113282747A
公开(公告)日:2021-08-20
申请号:CN202110465097.3
申请日:2021-04-28
Applicant: 南京大学
Abstract: 本发明公开一种基于自动机器学习算法选择的文本分类方法,基于级联式自动机器学习的思想,从多种机器学习算法中为文本分类任务配置最优算法,包括:(1)采用文本向量嵌入方法将文本语料数据编码成向量表示,生成文本分类数据集;(2)利用多摇臂赌博机算法从多个机器学习分类算法中选择一个算法;(3)利用超参优化方法自动为所选择的算法搜索一组超参数;(4)基于搜索到的超参数初始化相应算法的超参,并在文本分类数据集上训练模型;(5)重复步骤(2)到步骤(4),直到达到设定的迭代次数,将训练得到的多个分类模型中预测性能最好的模型用于文本分类任务。本方法能自动的为任务文本训练一个鲁棒的分类模型。
-