-
公开(公告)号:CN109492823B
公开(公告)日:2021-04-30
申请号:CN201811416279.6
申请日:2018-11-26
Applicant: 南京大学
IPC: G06Q10/04 , G06Q50/06 , G06F16/2458
Abstract: 本发明公开了一种对输电线路覆冰厚度的预测方法,包括:步骤1:采集输电线路的微气象、覆冰厚度信息和天气预报信息;步骤2:将采集到的微气象信息、覆冰厚度信息和天气预报信息划分为训练数据集和测试数据集;步骤3:训练得到输电线路覆冰厚度预测模型Ice_Thick_Predict_Model;步骤4:使用测试集测试模型Ice_Thick_Predict_Model的效果,根据测试效果调整模型的超参数,然后重复跳转到步骤3,直至获得理想的模型。步骤5:实现短期输电线路覆冰厚度的预测。
-
公开(公告)号:CN110188397B
公开(公告)日:2022-07-19
申请号:CN201910370812.8
申请日:2019-05-06
Applicant: 南瑞集团有限公司 , 南京大学 , 国网江西省电力有限公司
Abstract: 本发明公开了一种架空输电线路覆冰预测模型和方法,所述模型通过如下步骤构建:步骤1,从线路在线监测系统中获取覆冰相关数据,筛选和处理所获取的数据;步骤2,建立和训练时序卷积神经网络模型,该模型用于预测覆冰因素;步骤3,建立和训练支持向量回归模型,该模型用于建立覆冰因素与覆冰厚度的映射,时序卷积神经网络模型和支持向量回归模型共同组成架空输电线路覆冰预测模型。使用建立的模型即能够进行覆冰预测。
-
公开(公告)号:CN109492823A
公开(公告)日:2019-03-19
申请号:CN201811416279.6
申请日:2018-11-26
Applicant: 南京大学
IPC: G06Q10/04 , G06Q50/06 , G06F16/2458
Abstract: 本发明公开了一种对输电线路覆冰厚度的预测方法,包括:步骤1:采集输电线路的微气象、覆冰厚度信息和天气预报信息;步骤2:将采集到的微气象信息、覆冰厚度信息和天气预报信息划分为训练数据集和测试数据集;步骤3:训练得到输电线路覆冰厚度预测模型Ice_Thick_Predict_Model;步骤4:使用测试集测试模型Ice_Thick_Predict_Model的效果,根据测试效果调整模型的超参数,然后重复跳转到步骤3,直至获得理想的模型。步骤5:实现短期输电线路覆冰厚度的预测。
-
公开(公告)号:CN110188397A
公开(公告)日:2019-08-30
申请号:CN201910370812.8
申请日:2019-05-06
Applicant: 南瑞集团有限公司 , 南京大学 , 国网江西省电力有限公司
Abstract: 本发明公开了一种架空输电线路覆冰预测模型和方法,所述模型通过如下步骤构建:步骤1,从线路在线监测系统中获取覆冰相关数据,筛选和处理所获取的数据;步骤2,建立和训练时序卷积神经网络模型,该模型用于预测覆冰因素;步骤3,建立和训练支持向量回归模型,该模型用于建立覆冰因素与覆冰厚度的映射,时序卷积神经网络模型和支持向量回归模型共同组成架空输电线路覆冰预测模型。使用建立的模型即能够进行覆冰预测。
-
-
-