-
公开(公告)号:CN113283472A
公开(公告)日:2021-08-20
申请号:CN202110421943.1
申请日:2021-04-20
Applicant: 南京大学
IPC: G06K9/62
Abstract: 本发明公开一种基于零阶优化的数据特征选择方法,包括:数据采样,得到采样值;基于采样值进行训练,来得到采样值的评价,最后基于评价与采样值来更新优化算法采样空间;将数据特征选择作为一个采样空间的取值,训练出对应的模型性能指标作为评价来优化采样空间;采样空间是一个向量,以数据的特征数作为采样空间的维度,对采样空间的每维进行二值离散化,以此作为优化算法的配置;之后,进行预设轮次的循环。本发明保留包裹式方法在性能上优势的同时,在选择特征中引入了零阶优化算法,有效的减少了模型训练的次数,使其效率与准确度均有良好的表现有更高的效率。另外,本发明对多种模型都可适用,应用场景广泛,具有更强的鲁棒性。