一种基于SDN组网的多设备联邦学习系统

    公开(公告)号:CN115174404B

    公开(公告)日:2024-06-21

    申请号:CN202210533169.8

    申请日:2022-05-17

    Applicant: 南京大学

    Abstract: 本发明公开了一种基于SDN组网的多设备联邦学习系统,系统内采用SDN进行组网连接,该系统将边缘设备根据互相之间的延迟分为数个小组,组内采用去中心化的联邦学习策略进行联邦学习训练;在完成组内训练后,根据SDN中提供的信息在每组中选择网络性能最强的设备,让其将本组模型发送给中心节点,由中心节点对各组模型进行聚合。本发明通过对原有联邦学习过程的改良,更充分地使用了边缘设备的数据、算力与网络带宽,同时降低中心节点的压力,提高了模型训练效率,进而使各边缘设备上的数据能够更快地转化为深度学习模型,有效提升了深度学习服务的质量。

    一种基于SDN组网的多设备联邦学习系统

    公开(公告)号:CN115174404A

    公开(公告)日:2022-10-11

    申请号:CN202210533169.8

    申请日:2022-05-17

    Applicant: 南京大学

    Abstract: 本发明公开了一种基于SDN组网的多设备联邦学习系统,系统内采用SDN进行组网连接,该系统将边缘设备根据互相之间的延迟分为数个小组,组内采用去中心化的联邦学习策略进行联邦学习训练;在完成组内训练后,根据SDN中提供的信息在每组中选择网络性能最强的设备,让其将本组模型发送给中心节点,由中心节点对各组模型进行聚合。本发明通过对原有联邦学习过程的改良,更充分地使用了边缘设备的数据、算力与网络带宽,同时降低中心节点的压力,提高了模型训练效率,进而使各边缘设备上的数据能够更快地转化为深度学习模型,有效提升了深度学习服务的质量。

Patent Agency Ranking