一种基于压缩感知原理的卷积神经网络压缩方法及解压缩方法

    公开(公告)号:CN107832837B

    公开(公告)日:2021-09-28

    申请号:CN201711215956.3

    申请日:2017-11-28

    Applicant: 南京大学

    Abstract: 本发明公开了一种基于压缩感知原理的卷积神经网络压缩方法及解压缩方法,其中压缩方法包括:预处理步骤、将卷积神经网络中的每一层的权值预处理为一系列矩阵;压缩步骤、将预处理步骤得到的预处理结果进行压缩处理得出压缩后的权值;训练步骤、对压缩后的权值进行训练;编码步骤、对训练步骤训练后的已压缩权值进行编码;模型生成步骤、根据经编码步骤得到的编码结果生成压缩后的卷积神经网络模型文件。本发明基于压缩感知原理的卷积神经网络压缩方法,相比其他方法,会比现在较为流行的直接剪枝量化方法有更高的压缩率,而且可以通过在频域中保留低频信息来防止过多的信息损失。

    一种基于压缩感知原理的卷积神经网络压缩方法及解压缩方法

    公开(公告)号:CN107832837A

    公开(公告)日:2018-03-23

    申请号:CN201711215956.3

    申请日:2017-11-28

    Applicant: 南京大学

    CPC classification number: G06N3/0454 G06N3/08

    Abstract: 本发明公开了一种基于压缩感知原理的卷积神经网络压缩方法及解压缩方法,其中压缩方法包括:预处理步骤、将卷积神经网络中的每一层的权值预处理为一系列矩阵;压缩步骤、将预处理步骤得到的预处理结果进行压缩处理得出压缩后的权值;训练步骤、对压缩后的权值进行训练;编码步骤、对训练步骤训练后的已压缩权值进行编码;模型生成步骤、根据经编码步骤得到的编码结果生成压缩后的卷积神经网络模型文件。本发明基于压缩感知原理的卷积神经网络压缩方法,相比其他方法,会比现在较为流行的直接剪枝量化方法有更高的压缩率,而且可以通过在频域中保留低频信息来防止过多的信息损失。

Patent Agency Ranking