-
公开(公告)号:CN114011426B
公开(公告)日:2023-05-09
申请号:CN202111526917.1
申请日:2021-12-14
Applicant: 南京大学
IPC: B01J23/83 , B01J35/02 , B01J35/08 , B01J35/10 , C02F1/72 , C02F1/78 , C02F101/10 , C02F101/20 , C02F101/30 , C02F101/34
Abstract: 本发明涉及一种废水处理臭氧氧化催化剂及其应用方法,属于水处理技术领域。本发明提供的催化剂兼具高效稳定的催化活性、优良的流体力学特性、丰富的孔结构、较高的机械强度,具有适宜的变价活性、吸附活性、催化臭氧分解活性和催化臭氧氧化降解活性,适用于鼓泡塔等反应器,可规模量产,处理实际废水有机污染物降解效率相比单独臭氧氧化或陶粒基催化剂大幅提升,还可用于强化络合态重金属臭氧氧化破络释放游离重金属,也可提高臭氧氧化将有机磷、次磷酸盐、亚磷酸盐等转化为正磷酸盐的效率,运行效果稳定,适合用于工业废水以及工业园区废水深度处理。
-
公开(公告)号:CN114588936A
公开(公告)日:2022-06-07
申请号:CN202210246006.1
申请日:2022-03-14
Applicant: 南京大学 , 江苏南大环保科技有限公司
IPC: B01J31/02 , B01J21/06 , B01J35/10 , C02F1/72 , C02F101/34 , C02F101/36 , C02F101/38
Abstract: 本发明公开了一种锆基类芬顿催化剂及其制备方法和应用,属于水处理技术领域。它包括多孔载体和50wt%~80wt%的无定型ZrO2,无定形ZrO2负载于多孔载体上,ZrO2表面含有‑OH基团;催化剂的比表面积为20cm2/g~800cm2/g。本发明制备的锆基类芬顿催化剂能够高效催化氧化实现有机物的选择性降解,并且具有良好的稳定性、抗共存组分干扰能力和氧化剂利用效率。
-
公开(公告)号:CN109174137B
公开(公告)日:2020-05-22
申请号:CN201811338578.2
申请日:2018-11-12
Applicant: 南京大学 , 江苏南大环保科技有限公司
IPC: B01J27/053 , B01J27/055 , C02F1/78 , C02F103/16 , C02F103/34
Abstract: 本发明公开了一种改性陶粒臭氧催化剂、制备方法及应用,属于催化剂制备及应用领域。所述催化剂成分以质量百分比计为:金属1~20%、硫酸根0.1~1.5%、羟基0.1~0.2%和陶粒基质80~99%。所述的改性陶粒臭氧催化剂的制备方法,包括以下步骤:(1)将陶粒臭氧催化剂与硫酸及其金属盐的混合溶液混合、浸渍,浸渍同时进行加热、搅拌,随后继续浸渍;再进行过滤;(2)将过滤所得固体清洗、焙烧,得到改性陶粒臭氧催化剂。本发明通过提高陶粒臭氧催化剂载体的比表面积,去除不利于臭氧催化的金属离子,增加有利于臭氧稳定的金属离子来提高催化剂的催化性能,利于推广。
-
公开(公告)号:CN110451681A
公开(公告)日:2019-11-15
申请号:CN201910700004.3
申请日:2019-07-31
Applicant: 南京大学 , 江苏南大环保科技有限公司
IPC: C02F9/04 , C02F101/20 , C02F101/30
Abstract: 本发明公开了一种促进高级氧化效果的废水处理控制方法,属于废水处理领域。具体包括如下步骤:(1)测定废水中含有的重金属离子种类及相应的摩尔浓度;(2)向废水中加入氧化剂,对废水进行高级氧化处理,根据废水中的重金属离子含量来确定氧化剂的添加量;(3)对步骤(2)中的出水进行检测,若出水中COD浓度值≤50mg/L,TOC浓度值≤20mg/L,则停止进行高级氧化处理;否则需进行进一步的高级氧化处理;从所处理废水水质实际出发,在最大化提高氧化反应效率的同时有效节约药剂,减少运行成本。
-
公开(公告)号:CN109663589A
公开(公告)日:2019-04-23
申请号:CN201910027161.2
申请日:2019-01-11
Applicant: 南京大学
IPC: B01J23/10 , B01J35/08 , B01J35/10 , C02F1/72 , C02F1/78 , C02F101/34 , C02F101/36
Abstract: 铈钛氧化物介孔毫米球臭氧催化剂及其制备方法与应用,属于水处理技术领域。本发明提供的铈钛氧化物催化剂为具有介孔结构的毫米球形颗粒,兼具高催化活性、优良的流体力学特性、适宜的孔结构、抗压机械强度和稳定性,可显著提高臭氧氧化降解有机污染物的矿化率。本发明提供的该催化剂的制备方法提供了可适用于廉价的无机金属盐为原料的经济制备方法,相比于现有技术有机金属醇盐法,大幅降低了制备成本,绿色经济。本发明的催化剂可应用于固定床或流化床反应器催化臭氧化处理废水。
-
公开(公告)号:CN114011426A
公开(公告)日:2022-02-08
申请号:CN202111526917.1
申请日:2021-12-14
Applicant: 南京大学
IPC: B01J23/83 , B01J35/02 , B01J35/08 , B01J35/10 , C02F1/72 , C02F1/78 , C02F101/10 , C02F101/20 , C02F101/30 , C02F101/34
Abstract: 本发明涉及一种废水处理臭氧氧化催化剂及其应用方法,属于水处理技术领域。本发明提供的催化剂兼具高效稳定的催化活性、优良的流体力学特性、丰富的孔结构、较高的机械强度,具有适宜的变价活性、吸附活性、催化臭氧分解活性和催化臭氧氧化降解活性,适用于鼓泡塔等反应器,可规模量产,处理实际废水有机污染物降解效率相比单独臭氧氧化或陶粒基催化剂大幅提升,还可用于强化络合态重金属臭氧氧化破络释放游离重金属,也可提高臭氧氧化将有机磷、次磷酸盐、亚磷酸盐等转化为正磷酸盐的效率,运行效果稳定,适合用于工业废水以及工业园区废水深度处理。
-
公开(公告)号:CN109987749B
公开(公告)日:2021-05-07
申请号:CN201910349596.9
申请日:2019-04-28
Applicant: 南京大学 , 江苏南大环保科技有限公司
IPC: C02F9/04
Abstract: 本发明公开了一种由钙和有机酸类络合物介导的促进芬顿氧化的控制方法,属于废水处理领域。其处理步骤如下:调节废水pH值至2~5,加入Fe2+和过氧化氢,在废水中引入Ca2+和有机酸类络合物进行芬顿反应,所述有机酸类络合物包括黄腐酸和柠檬酸,本发明通过在芬顿处理体系中引入钙离子和有机酸类络合物,大大突破芬顿反应的速度控制步骤,促进了芬顿氧化效率,而且根据废水中有机物浓度和过氧化氢浓度精准控制引入Ca2+的浓度,并根据Fe2+和Ca2+的浓度计算废水中有机酸类络合物的浓度,进而确定有机酸类络合物的投加量,在最大化提高芬顿反应效率的同时有效节约药剂。
-
公开(公告)号:CN111517421A
公开(公告)日:2020-08-11
申请号:CN202010326062.7
申请日:2020-04-23
Applicant: 南京大学 , 江苏南大环保科技有限公司
IPC: C02F1/461 , C02F9/06 , C02F9/14 , C02F101/20 , C02F101/30 , C02F101/38 , C02F103/16 , C02F103/30 , C02F103/34 , C02F103/36
Abstract: 本发明提供了一种利用含铁废酸液废水提高铁碳微电解反应效率的方法,属于废水处理与废酸资源化领域。所述方法在使用铁碳微电解反应去除废水中难降解有机物的过程中,在所述铁碳微电解反应前,反应中加入含Fe2+的废酸液废水,所述的含铁废酸液废水中还含有贵重金属元素。本发明的方法不仅利用含铁废酸液中的酸性体系调节铁碳微电解反应体系的pH环境,还利用酸液中大量的Fe2+具有的电子转移的作用,抑制作为填料的铁单质表面的氧化,防止铁碳填料上致密氧化层的形成,防止钝化,由此提高铁碳微电解的反应效率;同时利用贵重金属的催化作用显著降低有机物断链的活化能,显著提高铁碳微电解的反应效率。
-
公开(公告)号:CN107262071B
公开(公告)日:2020-03-24
申请号:CN201710707802.X
申请日:2017-08-17
Applicant: 南京大学
Abstract: 本发明公开了一种氧化铁树脂复合吸附剂的工业制备方法,属于废水处理的复合树脂吸附剂的工业生产领域。本发明的制备步骤包括(A)将强碱性阴离子树脂分批加入铁盐溶液中,搅拌,(B)过滤,滤液回收套用在步骤(A)中;(C)将步骤(B)滤渣分批添加到氢氧化钠溶液中反应,过滤;(D)在步骤(C)滤液中添加NaOH后,套用在步骤(C)中;(E)氯化钠水溶液和水洗涤步骤(C)的滤渣,过滤,烘干。本发明固载Fe(III)的强碱性阴离子树脂吸附剂的工业制备方法中,铁盐溶液、碱液、酸液等物均可再回收套用,极大地降低了生产成本和环境污染,符合目前国家的节能减排产业政策,适宜工业化推广。
-
公开(公告)号:CN107597073B
公开(公告)日:2020-02-21
申请号:CN201710707171.1
申请日:2017-08-17
Applicant: 南京大学 , 江苏南大环保科技有限公司
Abstract: 本发明公开了一种阳离子树脂基载锆纳米复合吸附剂的工业制备方法,属于废水处理的纳米复合树脂吸附剂的工业生产领域,具体地说,涉及一种反应物料可回收套用的阳离子树脂基载锆纳米复合吸附剂的工业制备方法。制备步骤包括制备锆盐溶液;将酸性阳离子树脂分批加入锆盐溶液中,搅拌、过滤,锆盐溶液回收套用;干燥;通过添加NaOH溶液碱化,得到阳离子树脂基载锆纳米复合物,碱液回收套用;添加盐酸溶液中和;以及水洗。本发明阳离子树脂基载锆纳米复合吸附剂的工业制备方法中,清洗液、锆盐溶液、碱液、酸液等物料都可以再次回收套用,极大地降低了生产成本和环境污染,符合目前国家的节能减排产业政策,适宜工业化推广。
-
-
-
-
-
-
-
-
-