一种基于深度神经网络的电子卷宗标题定位提取与分类方法

    公开(公告)号:CN110929746A

    公开(公告)日:2020-03-27

    申请号:CN201910454209.8

    申请日:2019-05-24

    Applicant: 南京大学

    Abstract: 本发明公开了一种基于深度神经网络的电子卷宗标题定位提取与分类方法,包括以下步骤:将卷宗图片输入神经网络提取多张多尺寸的特征图,根据输出的特征图计算类别分数以及边框位置,通过多种标题选举算法推选出文书当中的标题位置以及标题类别。本发明目的是为了解决在实际处理电子卷宗过程中,经常需要手动对电子卷宗图像进行分类的情况,从单纯的图像层面而不是通过OCR(光学字符识别)等方式来提取图像的标题,通过图像的特征能够准确获得图像标题的位置及类别,提高了鲁棒性泛用性,提高了图像分类的准确性。

Patent Agency Ranking