-
公开(公告)号:CN114581748B
公开(公告)日:2022-09-23
申请号:CN202210483252.9
申请日:2022-05-06
Applicant: 南京大学
IPC: G06V10/80 , G06V10/774 , G06K9/62 , G06N20/00
Abstract: 本发明公开一种基于机器学习的多智能体感知融合系统及其实现方法,多个智能体在行驶过程中通过摄像头采集道路环境图片,根据采集的道路环境图片制作训练数据集;使用训练数据集训练算法模型,并将算法模型部署在计算芯片上;使用过程:智能体行驶过程中,通过摄像头采集道路环境图片,并发送给计算芯片,在计算芯片中运行算法模型,提取图片中的特征,对多摄像头图片进行特征融合,对融合好的特征进行多任务预测,得到环境信息,使用通信模块将环境信息分享给周边智能体并获取周边智能体分享的环境信息,计算芯片将通信获取的环境信息进行融合,完善自身环境信息。本发明增加了智能体感知范围,降低了智能体感知盲区,提高了智能体的决策精度。
-
公开(公告)号:CN114581748A
公开(公告)日:2022-06-03
申请号:CN202210483252.9
申请日:2022-05-06
Applicant: 南京大学
IPC: G06V10/80 , G06V10/774 , G06K9/62 , G06N20/00
Abstract: 本发明公开一种基于机器学习的多智能体感知融合系统及其实现方法,多个智能体在行驶过程中通过摄像头采集道路环境图片,根据采集的道路环境图片制作训练数据集;使用训练数据集训练算法模型,并将算法模型部署在计算芯片上;使用过程:智能体行驶过程中,通过摄像头采集道路环境图片,并发送给计算芯片,在计算芯片中运行算法模型,提取图片中的特征,对多摄像头图片进行特征融合,对融合好的特征进行多任务预测,得到环境信息,使用通信模块将环境信息分享给周边智能体并获取周边智能体分享的环境信息,计算芯片将通信获取的环境信息进行融合,完善自身环境信息。本发明增加了智能体感知范围,降低了智能体感知盲区,提高了智能体的决策精度。
-