-
公开(公告)号:CN112036335A
公开(公告)日:2020-12-04
申请号:CN202010915753.0
申请日:2020-09-03
Applicant: 南京农业大学
Abstract: 本发明提出一种反卷积引导的半监督植物叶部病害识别与分割方法,使用少量病害类别标注和病斑的像素级标注,通过反卷积实现病害种类的识别和病斑区域的分割。本方法通过一致性正则化、熵最小化方法生成无标记样本的类别预测标签;将有标记样本和无标记样本进行图像混合,利用新生成的图像进行半监督病害分类;对类别信息进行上采样,利用少量像素级标记进行半监督病斑分割。在模型训练的过程中,使用指数加权平均更新模型参数,使模型在测试数据上更加鲁棒。本发明适用于标签样本数量不足的植物叶部病害识别与分割的情况,实现了识别与分割的一体化,模型在光线不足、有异物遮挡叶片图像中具有较强的泛化能力,识别和分割速度能够满足实时性要求。
-
公开(公告)号:CN112036335B
公开(公告)日:2023-12-26
申请号:CN202010915753.0
申请日:2020-09-03
Applicant: 南京农业大学
IPC: G06V20/10 , G06V10/26 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/084
Abstract: 本发明提出一种反卷积引导的半监督植物叶部病害识别与分割方法,使用少量病害类别标注和病斑的像素级标注,通过反卷积实现病害种类的识别和病斑区域的分割。本方法通过一致性正则化、熵最小化方法生成无标记样本的类别预测标签;将有标记样本和无标记样本进行图像混合,利用新生成的图像进行半监督病害分类;对类别信息进行上采样,利用少量像素级标记进行半监督病斑分割。在模型训练的过程中,使用指数加权平均更新模型参数,使模型在测试数据上更加鲁棒。本发明适用于标签样本数量不足的植物叶部病害识别与分割的情况,实现了识别与分割的一体化,模型在光线不足、有异物遮挡叶片图像中具有较强的泛化能力,识别和分割速度能够满足实时性要求。
-