-
公开(公告)号:CN116416524A
公开(公告)日:2023-07-11
申请号:CN202310330513.8
申请日:2023-03-30
Applicant: 南京农业大学
IPC: G06V20/10 , G06V10/77 , G06V10/80 , G06V10/764 , G06V10/82 , G06V10/774 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种水稻白叶枯病早期无症状检测方法,包括以下步骤:利用随机森林算法在特征波长区间中选取出高重要性评分的光谱波长作为特征敏感波长;将特征敏感波长处的高光谱图像作为用于区分高光谱图像所属叶片类别的敏感图像特征;基于敏感图像特征对3DCNN模型训练得到用于水稻白叶枯病早期无症状检测的3DCNN无症状检测模型;在3DCNN无症状检测模型中引入多尺度光谱空洞卷积模块进行精度优化得到MS‑SDC‑3DCNN模型。本发明利用随机森林算法对高光谱图像进行降维,采用多尺度光谱空洞卷积模块对无症状检测模型进行优化,无症状检测模型利用经提取和融合后多个波长分辨率的特征,更有效地使用重要的波长信息,以提高无症状检测模型的检测性能。