一种基于改进YOLOv4的图像目标检测方法

    公开(公告)号:CN114818872A

    公开(公告)日:2022-07-29

    申请号:CN202210330773.0

    申请日:2022-03-30

    Abstract: 本发明涉及一种基于改进YOLOv4的图像目标检测方法,基于现有YOLOv4路径增强网络进行改进,通过增加检测层的设计,加强浅层特征融合的效果,并结合聚类方法下,所获图像集对应的各先验框尺寸,实现各检测层的高精度特征提取,并且引入多尺度池化模块并行结构、结合卷积处理与插值处理的金字塔池化模块,进一步特征层的检测精度,进而有效提高对图片目标物检测的准确率;在实际的仿真实验当中,本发明设计方法表现出了优秀的目标检测准确率,在PASCAL VOC2007和VOC2012两个数据集上的mAP分别提高了2.03%和1.94%。

    一种基于改进YOLOv4的图像目标检测方法

    公开(公告)号:CN114818872B

    公开(公告)日:2024-12-06

    申请号:CN202210330773.0

    申请日:2022-03-30

    Abstract: 本发明涉及一种基于改进YOLOv4的图像目标检测方法,基于现有YOLOv4路径增强网络进行改进,通过增加检测层的设计,加强浅层特征融合的效果,并结合聚类方法下,所获图像集对应的各先验框尺寸,实现各检测层的高精度特征提取,并且引入多尺度池化模块并行结构、结合卷积处理与插值处理的金字塔池化模块,进一步特征层的检测精度,进而有效提高对图片目标物检测的准确率;在实际的仿真实验当中,本发明设计方法表现出了优秀的目标检测准确率,在PASCAL VOC2007和VOC2012两个数据集上的mAP分别提高了2.03%和1.94%。

Patent Agency Ranking