一种基于YOLOv3改进的口罩佩戴智能检测方法

    公开(公告)号:CN113642388A

    公开(公告)日:2021-11-12

    申请号:CN202110757098.5

    申请日:2021-07-05

    Abstract: 本发明公开了一种基于YOLOv3改进的口罩佩戴智能检测方法,属于通信信道编码的译码技术领域,包括口罩数据集图像信息的获取;将口罩数据集划分为独立不重复的验证集和测试集;口罩数据集图像的特征提取;口罩数据集基于Darknet53(加PyConv)的模型构建。本发明采用Darknet53进行口罩检测模型的构建,提供了一种智能口罩佩戴检测方法;由于场景较为复杂,原始YOLOv3算法表现并不理想,尤其在被遮挡目标和小目标检测上,检测效果较差。在此基础上再加入金字塔卷积(Pyramidal Convolution),可以更好地捕捉不同层级的细节信息,从而实现准确的定位和分类是否佩戴口罩。本发明可以有效地检测出人员是否佩戴口罩;同时在一定程度上可以缓解人员交叉感染的风险,保障人员生命安全。

    异构网络中基于深度学习的用户关联联合功率分配策略

    公开(公告)号:CN113473580A

    公开(公告)日:2021-10-01

    申请号:CN202110526421.8

    申请日:2021-05-14

    Abstract: 本发明公开了异构网络中基于深度学习的用户关联联合功率分配策略,属于通信系统技术领域,包括如下步骤:步骤1:通信建模,建立异构网络模型;步骤2:数据集收集;步骤3:构建神经网络;步骤4:训练神经网络,并确定优化算法为Adam;步骤5:满足所有迭代次数时保存网络。本发明的异构网络中基于深度学习的用户关联联合功率分配策略,在异构网络中,用神经网络以监督学习的方式联合优化用户关联和功率分配,实现对传统算法的高度拟合,同时保证低的计算复杂度,提供实时可靠的在线决策。

    基于一维深度卷积神经网络的功率分配策略

    公开(公告)号:CN113518457B

    公开(公告)日:2024-06-07

    申请号:CN202110437441.8

    申请日:2021-04-22

    Abstract: 本发明公开了基于一维深度卷积神经网络的功率分配策略,属于通信系统领域,针对现有基于深度神经网络的功率分配算法的不足,提供一种基于一维深度卷积神经网络的功率控制策略,既能实现在线决策,又能对传统算法达到一个很好的性能逼近,其网络预测能力要优于目前的基于全连接结构的深度神经网络。本发明研究了用一维卷积神经网络替代传统算法的资源分配策略,通过监督学习的方式,学习基于传统算法得到的功率分配效果,实现快速可靠的在线决策,与传统的基于深度学习的功率分配算法相比,克服了学习能力有限的缺点,其预测能力更高。

    基于一维深度卷积神经网络的功率分配策略

    公开(公告)号:CN113518457A

    公开(公告)日:2021-10-19

    申请号:CN202110437441.8

    申请日:2021-04-22

    Abstract: 本发明公开了基于一维深度卷积神经网络的功率分配策略,属于通信系统领域,针对现有基于深度神经网络的功率分配算法的不足,提供一种基于一维深度卷积神经网络的功率控制策略,既能实现在线决策,又能对传统算法达到一个很好的性能逼近,其网络预测能力要优于目前的基于全连接结构的深度神经网络。本发明研究了用一维卷积神经网络替代传统算法的资源分配策略,通过监督学习的方式,学习基于传统算法得到的功率分配效果,实现快速可靠的在线决策,与传统的基于深度学习的功率分配算法相比,克服了学习能力有限的缺点,其预测能力更高。

Patent Agency Ranking