一种无线光通信多用户检测方法及验证方法

    公开(公告)号:CN117914412A

    公开(公告)日:2024-04-19

    申请号:CN202410082332.2

    申请日:2024-01-19

    Abstract: 本发明公开了一种无线光通信多用户检测方法及验证方法,所述检测方法包括获取来自不同用户的不同信号,将信号调制到相干态;将相干态的信号输入预先构建的基于对称相干态信号的多址信道模型中,使用最小误差判别法MED或者无歧义状态判别法USD进行多用户检测,获取检测结果,本发明旨在使用基于相干态的量子测量技术实现无线光通信中的多址访问和多用户检测,将MED和USD两种量子测量方法应用在具有相干态信号的多址信道中,对无线光通信中的多用户检测问题提供了新的解决方法。本发明利用量子检测技术可以使多址信道适应光信号功率较低的通信环境,非常适合于自由空间光通信,特别是在接收信号功率受到高度限制的深空光通信中。

    一种用于检索的图像向量获取方法

    公开(公告)号:CN118227822B

    公开(公告)日:2024-09-27

    申请号:CN202410662513.2

    申请日:2024-05-27

    Abstract: 本发明公开了计算机视觉技术领域的一种用于检索的图像向量获取方法,旨在解决现有的图像向量获取方法无法兼顾轻量化、精度要求,且无法学习输入描述符的技术问题。其包括:预先构建混合聚合特征索引图像检索模型,包括空间分割层、卷积层和BOF层,图像数据集输入混合聚合特征索引图像检索模型生成图像向量;在BOF层之前引入空间分割技术以便于分割空间段进行局部特征的提取,BOF层量化输出后,拼接每一个空间段的输出结果获得图像最终的特征向量,有效提高了图像检索的性能并减少网络中的参数数量,保留了图像中特征所携带的空间信息;即不降低图像检索模型精度的情况下提高模型的性能,降低存储开销、计算量和卷积神经网络参数数量。

    一种用于检索的图像向量获取方法

    公开(公告)号:CN118227822A

    公开(公告)日:2024-06-21

    申请号:CN202410662513.2

    申请日:2024-05-27

    Abstract: 本发明公开了计算机视觉技术领域的一种用于检索的图像向量获取方法,旨在解决现有的图像向量获取方法无法兼顾轻量化、精度要求,且无法学习输入描述符的技术问题。其包括:预先构建混合聚合特征索引图像检索模型,包括空间分割层、卷积层和BOF层,图像数据集输入混合聚合特征索引图像检索模型生成图像向量;在BOF层之前引入空间分割技术以便于分割空间段进行局部特征的提取,BOF层量化输出后,拼接每一个空间段的输出结果获得图像最终的特征向量,有效提高了图像检索的性能并减少网络中的参数数量,保留了图像中特征所携带的空间信息;即不降低图像检索模型精度的情况下提高模型的性能,降低存储开销、计算量和卷积神经网络参数数量。

    一种量子迁移学习方法
    5.
    发明授权

    公开(公告)号:CN118657226B

    公开(公告)日:2024-11-22

    申请号:CN202411148997.5

    申请日:2024-08-21

    Abstract: 本发明公开了一种量子迁移学习方法,包括以下步骤:(1)获取Flowers Recognition花卉识别数据集和Animal‑10动物‑10数据集的数据并进行预处理;(2)构建ResNet18量子迁移学习模型和ResNet34量子迁移学习模型即在ResNet18网络和ResNet34网络中分别引入量子卷积神经网络模块;(3)分别对ResNet18量子迁移学习模型和ResNet34量子迁移学习模型进行训练,并与原有ResNet18和ResNet34模型进行对比;本发明将量子计算与迁移学习相融合,使得量子迁移学习模型能够取得比经典模型更好的性能或者速度。

    一种量子迁移学习方法
    8.
    发明公开

    公开(公告)号:CN118657226A

    公开(公告)日:2024-09-17

    申请号:CN202411148997.5

    申请日:2024-08-21

    Abstract: 本发明公开了一种量子迁移学习方法,包括以下步骤:(1)获取Flowers Recognition花卉识别数据集和Animal‑10动物‑10数据集的数据并进行预处理;(2)构建ResNet18量子迁移学习模型和ResNet34量子迁移学习模型即在ResNet18网络和ResNet34网络中分别引入量子卷积神经网络模块;(3)分别对ResNet18量子迁移学习模型和ResNet34量子迁移学习模型进行训练,并与原有ResNet18和ResNet34模型进行对比;本发明将量子计算与迁移学习相融合,使得量子迁移学习模型能够取得比经典模型更好的性能或者速度。

Patent Agency Ranking