-
公开(公告)号:CN117035073B
公开(公告)日:2024-03-29
申请号:CN202311036851.7
申请日:2023-08-16
Applicant: 南京信息工程大学
IPC: G06N5/02 , G01W1/10 , G06F18/213 , G06N3/0442 , G06N3/042 , G06N3/0455 , G06N3/045 , G06N3/048
Abstract: 本发明公开了一种基于分层事件发展模式归纳的未来气象事件预测方法,利用信息抽取工具从气象数据中提取出若干个气象事件,并按时间顺序进行排列;以最早发生的事件作为当前的实例图,并将其他事件作为候选事件集合,选择概率最大的后续事件,并将其添加到当前实例图中。利用DVAE抽取事件骨架图,随后,将骨架图和实例图分别输入到缩放图神经网络中,获得后续事件与当前实例图之间的匹配得分。在完成添加后续节点的实例图后,进行共指合并和实体关系边生成的处理。迭代执行归纳出气象事件发展模式图。本发明可以利用事件发展模式预测气象事件的概率,结合了气象事件发展的全局结构信息,减少了局部结构信息对于后续事件预测的影响。
-
公开(公告)号:CN118035435B
公开(公告)日:2024-06-11
申请号:CN202410444602.X
申请日:2024-04-15
Applicant: 南京信息工程大学
IPC: G06F16/34 , G06F18/213 , G06F18/25 , G06N3/0455 , G06N3/0464 , G06N3/094 , G06F40/126 , G06F40/284
Abstract: 本发明公开了一种新闻摘要生成方法及相关装置,本发明采用多模态编码,使新闻文本的单词编码特征和图片的视觉目标特征相互观察,使多模态关联,通过构建多模态动态图建模特征之间的关系,区分特征中的积极特征和消极特征,从而生成多模态关联、且凸显核心信息的新闻摘要,可更好地还原新闻文本的多维度信息,提供更为全面的新闻摘要,保证了新闻摘要的质量。
-
公开(公告)号:CN118035435A
公开(公告)日:2024-05-14
申请号:CN202410444602.X
申请日:2024-04-15
Applicant: 南京信息工程大学
IPC: G06F16/34 , G06F18/213 , G06F18/25 , G06N3/0455 , G06N3/0464 , G06N3/094 , G06F40/126 , G06F40/284
Abstract: 本发明公开了一种新闻摘要生成方法及相关装置,本发明采用多模态编码,使新闻文本的单词编码特征和图片的视觉目标特征相互观察,使多模态关联,通过构建多模态动态图建模特征之间的关系,区分特征中的积极特征和消极特征,从而生成多模态关联、且凸显核心信息的新闻摘要,可更好地还原新闻文本的多维度信息,提供更为全面的新闻摘要,保证了新闻摘要的质量。
-
公开(公告)号:CN117076608A
公开(公告)日:2023-11-17
申请号:CN202311078433.4
申请日:2023-08-25
Applicant: 南京信息工程大学
IPC: G06F16/33 , G06N5/02 , G06N3/0464 , G06N3/08 , G06F40/211
Abstract: 本发明公开一种基于文本动态跨度的整合外部事件知识的脚本事件预测方法及装置,属于信息检索与数据挖掘领域。本发明首先输入两个相关的脚本文档并且检索出其中的事件;接着,将每个文档中检索出的事件按照事件组成进行重新排序,得到最优事件脚本知识并进行整合。在整合阶段,将整合后的最优事件脚本知识输入进BERT,从而为文本添加标记;接着将相同标记的文本进行枚举连接,构造文本跨度;之后,基于当前构建的跨度得到最佳猜测,生成事件图结构。最后,将事件图输入到缩放神经网络中得到预测得分,选择得分最高的候选事件作为预测事件。本发明提出的基于文本动态跨度的整合外部事件知识的脚本预测学习在《纽约时报》语料库中的预测后续事件的精度较高。
-
公开(公告)号:CN117035073A
公开(公告)日:2023-11-10
申请号:CN202311036851.7
申请日:2023-08-16
Applicant: 南京信息工程大学
IPC: G06N5/02 , G01W1/10 , G06F18/213 , G06N3/0442 , G06N3/042 , G06N3/0455 , G06N3/045 , G06N3/048
Abstract: 本发明公开了一种基于分层事件发展模式归纳的未来气象事件预测方法,利用信息抽取工具从气象数据中提取出若干个气象事件,并按时间顺序进行排列;以最早发生的事件作为当前的实例图,并将其他事件作为候选事件集合,选择概率最大的后续事件,并将其添加到当前实例图中。利用DVAE抽取事件骨架图,随后,将骨架图和实例图分别输入到缩放图神经网络中,获得后续事件与当前实例图之间的匹配得分。在完成添加后续节点的实例图后,进行共指合并和实体关系边生成的处理。迭代执行归纳出气象事件发展模式图。本发明可以利用事件发展模式预测气象事件的概率,结合了气象事件发展的全局结构信息,减少了局部结构信息对于后续事件预测的影响。
-
-
-
-