基于傅立叶变换的谱域图卷积3D点云分类方法

    公开(公告)号:CN112149725A

    公开(公告)日:2020-12-29

    申请号:CN202010991678.6

    申请日:2020-09-18

    Inventor: 陈苏婷 陈怀新

    Abstract: 本发明公开了一种基于傅立叶变换的谱域图卷积3D点云分类方法,包括:利用G‑PointNet网络模型对输入的原始点云进行几何采样处理:通过设置一个角度阈值V,将点的邻域夹角值大于的点划分至几何特征区域G且剩余的点划分至其它区域T,采样获得各区域点云;基于Dynamic KNN局部图构造方法引入一个扩张率E,选择性地每隔E个近邻点云建立一个局部几何图。利用基于傅立叶变换的谱域图卷积方法进行谱域图卷积,获得多个池化后的图局部特征并通过G‑PointNet得到全局特征进行分类,获取得到分类结果。本发明有效解决了点云密集程度分布不均匀问题,保留了空间几何信息,能高效的区分点云的边缘点同时分离噪声点,提高分类精度。

    基于傅立叶变换的谱域图卷积3D点云分类方法

    公开(公告)号:CN112149725B

    公开(公告)日:2023-08-22

    申请号:CN202010991678.6

    申请日:2020-09-18

    Inventor: 陈苏婷 陈怀新

    Abstract: 本发明公开了一种基于傅立叶变换的谱域图卷积3D点云分类方法,包括:利用G‑PointNet网络模型对输入的原始点云进行几何采样处理:通过设置一个角度阈值V,将点的邻域夹角值大于的点划分至几何特征区域G且剩余的点划分至其它区域T,采样获得各区域点云;基于Dynamic KNN局部图构造方法引入一个扩张率E,选择性地每隔E个近邻点云建立一个局部几何图。利用基于傅立叶变换的谱域图卷积方法进行谱域图卷积,获得多个池化后的图局部特征并通过G‑PointNet得到全局特征进行分类,获取得到分类结果。本发明有效解决了点云密集程度分布不均匀问题,保留了空间几何信息,能高效的区分点云的边缘点同时分离噪声点,提高分类精度。

Patent Agency Ranking