-
公开(公告)号:CN114006826A
公开(公告)日:2022-02-01
申请号:CN202210000659.1
申请日:2022-01-04
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种融合流量特征的网络流量预测方法,具体涉及网络信息工程技术领域,收集并获得预设时间周期范围内的历史网络流量数据,并将所获的历史网络流量数据按照预设时间步长划分为预设数量个子流量序列,分别针对各个流量序列,构建并获得网络流量预测模型,应用网络流量预测模型,对子流量序列所对应的网络流量进行预测,获得网络流量的预测分类标签结果。通过本发明的技术方案将网络流量的自相似特性作为先验知识,将其融入长短记忆神经网络的门控机制中,再结合一维卷积神经网络和注意力机制提取流量序列的时间特征,能够恢复原始数据的特征,赋予模型预测结果的可解释性,从而提高网络流量的预测精度更好的描述网络流量的变化趋势。
-
公开(公告)号:CN114006826B
公开(公告)日:2022-04-22
申请号:CN202210000659.1
申请日:2022-01-04
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种融合流量特征的网络流量预测方法,具体涉及网络信息工程技术领域,收集并获得预设时间周期范围内的历史网络流量数据,并将所获的历史网络流量数据按照预设时间步长划分为预设数量个子流量序列,分别针对各个流量序列,构建并获得网络流量预测模型,应用网络流量预测模型,对子流量序列所对应的网络流量进行预测,获得网络流量的预测分类标签结果。通过本发明的技术方案将网络流量的自相似特性作为先验知识,将其融入长短记忆神经网络的门控机制中,再结合一维卷积神经网络和注意力机制提取流量序列的时间特征,能够恢复原始数据的特征,赋予模型预测结果的可解释性,从而提高网络流量的预测精度更好的描述网络流量的变化趋势。
-