-
公开(公告)号:CN112614070A
公开(公告)日:2021-04-06
申请号:CN202011576883.2
申请日:2020-12-28
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种基于DefogNet的单幅图像去雾方法,该方法以CycleGAN为基础进行适当优化,在生成器中采用跨层连接的结构,增加了模型的多尺度特征提取能力,有效避免过拟合的发生,从而优化图像的质量;设计了独特的损失函数,添加细节感知损失和色彩感知损失,避免去雾操作导致图像的颜色差异、重建缺失等情况,有效提高了去雾后图像的还原度;提出了Defog‑SN算法改进了判别器的结构,使得整个判别网络满足1‑Lipschitz连续,增强了模型的稳定性,有效避免了GANs网络易崩溃的问题。该方法仅仅需要大量的图像便能够顺利达到训练网络的目的,完全省略了人为提取特征的操作,并且不需要场景先验信息,具备了更强的实用性以及精确度,属于一种适应范围较广的方法。
-