一种基于多源数据融合的应急短临预报方法及系统

    公开(公告)号:CN115113301B

    公开(公告)日:2022-11-18

    申请号:CN202211010895.8

    申请日:2022-08-23

    Abstract: 本发明提供一种基于多源数据融合的应急短临预报方法及系统,涉及短临天气预报技术领域。本发明的步骤为:将多时次多通道卫星云图序列、多时次雷达回波图序列和相同时序下的基本气象预报因子打包作为数据样本,进行预处理和数据增强,得到训练样本;构建用于融合多源数据的网络,将训练样本输入网络中进行训练,得到训练好的多源数据融合网络;将预测区域之前符合短临预报有效时间内的多时次多通道卫星云图序列、多时次雷达回波图序列和相同时序下的基本气象预报因子输入所述训练好的多源数据融合网络,对区域未来若干时间段进行天气预测。本发明的应急短临预报方法,极大提高了预测的准确率。

    一种单阶段实例图像分割方法、装置以及计算机设备

    公开(公告)号:CN115222946B

    公开(公告)日:2022-11-25

    申请号:CN202211134330.0

    申请日:2022-09-19

    Abstract: 本发明公开了一种单阶段实例图像分割方法、装置以及计算机设备,涉及图像实例分割技术领域,首先提取多层次的图像特征信息,为了更充分地利用高层特征的语义信息和底层特征的细粒度特征,引入自适应特征融合模块计算不同尺度特征权重并融合,将融合后的特征送入三个分支进行实例核预测和掩码分割以及语义类别预测,为了突出特征核的位置信息,引入混合双注意力机制筛选有效特征核,然后将生成掩码与特征核进行映射,根据实例的分类分数和相应的掩码,确定每个实例的类别与置信度,阈值筛选得到最终的分割结果,为了权衡模型分割的速度与精度,采用二部匹配的策略,避免矩阵非极大值抑制操作,大大提升了分割速度。

    一种单阶段实例图像分割方法、装置以及计算机设备

    公开(公告)号:CN115222946A

    公开(公告)日:2022-10-21

    申请号:CN202211134330.0

    申请日:2022-09-19

    Abstract: 本发明公开了一种单阶段实例图像分割方法、装置以及计算机设备,涉及图像实例分割技术领域,首先提取多层次的图像特征信息,为了更充分地利用高层特征的语义信息和底层特征的细粒度特征,引入自适应特征融合模块计算不同尺度特征权重并融合,将融合后的特征送入三个分支进行实例核预测和掩码分割以及语义类别预测,为了突出特征核的位置信息,引入混合双注意力机制筛选有效特征核,然后将生成掩码与特征核进行映射,根据实例的分类分数和相应的掩码,确定每个实例的类别与置信度,阈值筛选得到最终的分割结果,为了权衡模型分割的速度与精度,采用二部匹配的策略,避免矩阵非极大值抑制操作,大大提升了分割速度。

    基于环境光与传输图并行估计网络的水下图像恢复方法

    公开(公告)号:CN115205166A

    公开(公告)日:2022-10-18

    申请号:CN202211126415.4

    申请日:2022-09-16

    Abstract: 本发明公开了一种基于环境光与传输图并行估计网络的水下图像恢复方法,涉及水下图像复原技术领域,在水下物理成像模型的基础上,并行神经网络由传输图估计网络(T‑net)和环境光估计网络(A‑net)两个部分组成,传输图估计网络(T‑net)采用多尺度密集残差的结构来估计传输图,环境光估计网络(A‑net)采用特征金字塔网络来估计环境光,传输图估计网络(T‑net)中加入了自注意力机制以关注全局信息对局部细节的影响,还用于补偿信息损失,特别是边缘信息,而多尺度估计有助于合并来自不同尺度的局部图像细节,在环境光估计网络(A‑net)中加入扩张卷积以增大感受野,更容易地关注到全局地信息。

    一种基于多源数据融合的应急短临预报方法及系统

    公开(公告)号:CN115113301A

    公开(公告)日:2022-09-27

    申请号:CN202211010895.8

    申请日:2022-08-23

    Abstract: 本发明提供一种基于多源数据融合的应急短临预报方法及系统,涉及短临天气预报技术领域。本发明的步骤为:将多时次多通道卫星云图序列、多时次雷达回波图序列和相同时序下的基本气象预报因子打包作为数据样本,进行预处理和数据增强,得到训练样本;构建用于融合多源数据的网络,将训练样本输入网络中进行训练,得到训练好的多源数据融合网络;将预测区域之前符合短临预报有效时间内的多时次多通道卫星云图序列、多时次雷达回波图序列和相同时序下的基本气象预报因子输入所述训练好的多源数据融合网络,对区域未来若干时间段进行天气预测。本发明的应急短临预报方法,极大提高了预测的准确率。

Patent Agency Ranking