-
公开(公告)号:CN112785479B
公开(公告)日:2023-05-23
申请号:CN202110084996.9
申请日:2021-01-21
Applicant: 南京信息工程大学
IPC: G06T1/00 , G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于少样本学习的图像隐形水印通用检测方法,包括水印特征提取、图构造、标签传播、损失计算四个步骤组成,在少样本转导传播网络框架的基础上改进了其特征嵌入步骤,改造后的特征嵌入部分由预处理、多尺度特征融合和特征嵌入三个子步骤组成。本发明在实际的图像隐形水印检测任务中可作为通用的隐形水印检测器,不需要单独训练针对特定的隐形水印嵌入算法。另外可在少量隐形水印嵌入算法的水印图像基础上训练图像隐形水印通用检测模型,使实际的图像隐形水印检测过程更加便捷,更加符合实际条件的限制,可真正满足实际情况下的图像隐形水印的检测。
-
公开(公告)号:CN112785479A
公开(公告)日:2021-05-11
申请号:CN202110084996.9
申请日:2021-01-21
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种基于少样本学习的图像隐形水印通用检测方法,包括水印特征提取、图构造、标签传播、损失计算四个步骤组成,在少样本转导传播网络框架的基础上改进了其特征嵌入步骤,改造后的特征嵌入部分由预处理、多尺度特征融合和特征嵌入三个子步骤组成。本发明在实际的图像隐形水印检测任务中可作为通用的隐形水印检测器,不需要单独训练针对特定的隐形水印嵌入算法。另外可在少量隐形水印嵌入算法的水印图像基础上训练图像隐形水印通用检测模型,使实际的图像隐形水印检测过程更加便捷,更加符合实际条件的限制,可真正满足实际情况下的图像隐形水印的检测。
-