-
公开(公告)号:CN113255493B
公开(公告)日:2023-06-30
申请号:CN202110533314.8
申请日:2021-05-17
Applicant: 南京信息工程大学
IPC: G06V20/40 , G06V10/26 , G06V10/74 , G06V10/762 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种融合视觉词和自注意力机制的视频目标分割方法,属于计算机视觉技术领域。该方法包括如下步骤:首先利用固定数量的视觉词来表示感兴趣的目标,即使一个对象作为一个整体可能会受到遮挡,变形,视点变化或者从同一视频中消失并重新出现,但其某些局部部分的外观仍会保持一致,因此使用视觉词可以实现更鲁棒的匹配。然后,我们将自注意力机制用于视觉单词匹配生成的相似图,以捕获不同相似图之间的依赖关系。最后,为了解决目标对象的外观变化和视觉词不匹配问题,提出了在线更新和全局匹配机制进一步提高准确率。本发明在部分视频场景中分割精度超出同类算法,同时分割效率有明显的提升。
-
公开(公告)号:CN113255493A
公开(公告)日:2021-08-13
申请号:CN202110533314.8
申请日:2021-05-17
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种融合视觉词和自注意力机制的视频目标分割方法,属于计算机视觉技术领域。该方法包括如下步骤:首先利用固定数量的视觉词来表示感兴趣的目标,即使一个对象作为一个整体可能会受到遮挡,变形,视点变化或者从同一视频中消失并重新出现,但其某些局部部分的外观仍会保持一致,因此使用视觉词可以实现更鲁棒的匹配。然后,我们将自注意力机制用于视觉单词匹配生成的相似图,以捕获不同相似图之间的依赖关系。最后,为了解决目标对象的外观变化和视觉词不匹配问题,提出了在线更新和全局匹配机制进一步提高准确率。本发明在部分视频场景中分割精度超出同类算法,同时分割效率有明显的提升。
-