-
公开(公告)号:CN106203354B
公开(公告)日:2019-04-12
申请号:CN201610554626.6
申请日:2016-07-14
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种基于混合深度结构的场景识别方法。改进先前混合深度识别框架,运用到场景识别的任务中,使用深度自编码器自动提取局部图像块特征代替传统混合深度网络的局部特征提取层,得到图像块高级局部特征。同时引入空间信息改进场景识别的局部特征编码层,最后使用深度判别网络识别场景,完善混合深度混合场景识别框架,使改进的混合深度场景在形式上和识别准确率上接近卷积神经网络的,计算效率上高于深度卷积神经网络。此外针对场景数据类内差异性和类间相似性有选择扩充场景数据,构建鲁棒性高,适应小数据集的深度混合场景识别模型。
-
公开(公告)号:CN106203354A
公开(公告)日:2016-12-07
申请号:CN201610554626.6
申请日:2016-07-14
Applicant: 南京信息工程大学
CPC classification number: G06K9/00684 , G06N3/02
Abstract: 本发明公开了一种基于混合深度结构的场景识别方法。改进先前混合深度识别框架,运用到场景识别的任务中,使用深度自编码器自动提取局部图像块特征代替传统混合深度网络的局部特征提取层,得到图像块高级局部特征。同时引入空间信息改进场景识别的局部特征编码层,最后使用深度判别网络识别场景,完善混合深度混合场景识别框架,使改进的混合深度场景在形式上和识别准确率上接近卷积神经网络的,计算效率上高于深度卷积神经网络。此外针对场景数据类内差异性和类间相似性有选择扩充场景数据,构建鲁棒性高,适应小数据集的深度混合场景识别模型。
-