-
公开(公告)号:CN106345395B
公开(公告)日:2019-05-21
申请号:CN201610873757.0
申请日:2016-09-30
Applicant: 南京信息工程大学
IPC: B01J20/06 , C02F1/28 , B01J20/30 , C02F101/20
Abstract: 本发明公开了氢氟酸改性废砖、基于该废砖的复合材料及在吸附重金属净化水体中的应用。氢氟酸改性废砖制备方法为:步骤S1,将废砖粉碎,过筛分级,选出0.5‑1.2mm粒径的砖粒;步骤S2,将砖粒用水洗涤、过滤后,于100‑110℃烘干;步骤S3,将步骤S2所得砖粒置于氢氟酸溶液中超声浸泡改性;氢氟酸溶液摩尔浓度为0.5‑10mol/L,氢氟酸溶液体积为砖粒质量15‑25倍;步骤S4,将改性后的砖粒洗涤至中性,100‑110℃烘干。基于上述改性废砖的复合材料制备方法为:将改性废砖浸泡于二氧化钛溶胶中,取出后烘干,得无定型二氧化钛负载的改性废砖。本发明复合材料通过将无定型二氧化钛负载于改性废砖上制成,对水体中重金属的吸附能力显著高于改性废砖、无定型二氧化钛单独吸附量之和。
-
公开(公告)号:CN106268625B
公开(公告)日:2018-09-25
申请号:CN201610873720.8
申请日:2016-09-30
Applicant: 南京信息工程大学
IPC: B01J20/12 , C02F1/28 , B01J20/30 , C02F101/20
Abstract: 本发明公开了草酸改性废砖、基于该废砖的复合材料及用其吸附水体重金属的方法,草酸改性废砖的制备方法包括:步骤S1,将废砖粉碎,过筛分级,选出0.5‑1.2mm粒径的砖粒;步骤S2,将砖粒用水洗涤、过滤,100‑110℃烘干;步骤S3,将步骤S2所得砖粒置于草酸溶液中超声浸泡改性;草酸溶液摩尔浓度为1‑10mol/L,草酸溶液体积为砖粒质量的15‑25倍。将改性废砖浸泡于硫化钠溶液中,再向其中滴加氯化铜溶液,最后过滤取出,烘干即得无定型硫化铜负载的改性废砖。本发明复合材料通过将无定型硫化铜负载于改性废砖上制成,对水体中重金属的吸附能力显著高于改性废砖、无定型硫化铜单独吸附量之和。
-
公开(公告)号:CN104492401A
公开(公告)日:2015-04-08
申请号:CN201410840262.9
申请日:2014-12-30
Applicant: 南京信息工程大学
CPC classification number: B01J20/265 , B01J20/28014 , B01J20/30 , B01J2220/4812 , C02F1/285 , C02F1/58
Abstract: 本发明提供无定形纳米硫化铜复合材料及其制备方法和应用,涉及环境治理领域。所述铜复合材料,是由无定形纳米硫化铜和大孔强碱性阴离子交换树脂组成的;所述复合材料采用如下方法制备:(1)在大孔强碱性阴离子交换树脂中,加入含有CuCl2的饱和氯化钠水溶液,在290-300K条件下振荡10-12h,过滤,得到带有氯化铜阴离子的树脂;(2)在步骤(1)所述带有氯化铜阴子的树脂中加入Na2S水溶液,280-290K条件下振荡4-6h,过滤,得到无定形纳米硫化铜复合材料。本发明复合材料,不仅对抗生素污染物具有较强和较快的吸附能力,而且在吸附过程中不易流失,易于回收和再生。
-
公开(公告)号:CN102874899B
公开(公告)日:2014-04-02
申请号:CN201210404739.X
申请日:2012-10-23
Applicant: 南京信息工程大学
IPC: C02F1/42 , C02F101/34
Abstract: 本发明提供一种利用离子交换树脂去除水体中邻苯二甲酸单酯类污染物的方法,相比现有的去除技术,该方法具有吸附量大,选择性强,易于分离再生和操作简便的优势。该方法包括以下步骤:1)将含邻苯二甲酸单酯类污染物的废水经过滤去除其中的不溶性杂质,然后将废水pH值调至6-8范围内;2)在常温环境下,将步骤1)得到的废水通过装有阴离子交换树脂的床层;3)当出水浓度达到进水浓度的2%时,停止吸附,用氯化钠溶液对树脂进行脱附再生。
-
公开(公告)号:CN103204562A
公开(公告)日:2013-07-17
申请号:CN201310160020.0
申请日:2013-05-03
Applicant: 南京信息工程大学
Abstract: 本发明提供利用硫化铜吸附去除水中抗生素类污染物的方法,属于水污染控制领域。该方法为:将含抗生素类污染物的废水过滤,调节pH至5-9;将步骤(1)处理后的废水通过装有硫化铜的床层。所述抗生素类污染物为四环素类、青霉素类、大环内酯类、磺胺类氟喹诺酮类抗生素中的任意一种。与现有水体中抗生素的去除技术相比,本发明的有益效果在于:1.能够选择性络合去除水体中抗生素类污染物,出水浓度可低至1μg/L以下;2.吸附量大,硫化铜的吸附量可以达到500mg/g;3.吸附速率快,易于再生,操作简便,成本低,无二次污染。
-
公开(公告)号:CN106268625A
公开(公告)日:2017-01-04
申请号:CN201610873720.8
申请日:2016-09-30
Applicant: 南京信息工程大学
IPC: B01J20/12 , C02F1/28 , B01J20/30 , C02F101/20
CPC classification number: B01J20/12 , B01J20/0237 , C02F1/281 , C02F2101/20
Abstract: 本发明公开了草酸改性废砖、基于该废砖的复合材料及用其吸附水体重金属的方法,草酸改性废砖的制备方法包括:步骤S1,将废砖粉碎,过筛分级,选出0.5-1.2mm粒径的砖粒;步骤S2,将砖粒用水洗涤、过滤,100-110℃烘干;步骤S3,将步骤S2所得砖粒置于草酸溶液中超声浸泡改性;草酸溶液摩尔浓度为1-10mol/L,草酸溶液体积为砖粒质量的15-25倍。将改性废砖浸泡于硫化钠溶液中,再向其中滴加氯化铜溶液,最后过滤取出,烘干即得无定型硫化铜负载的改性废砖。本发明复合材料通过将无定型硫化铜负载于改性废砖上制成,对水体中重金属的吸附能力显著高于改性废砖、无定型硫化铜单独吸附量之和。
-
公开(公告)号:CN103204562B
公开(公告)日:2014-06-11
申请号:CN201310160020.0
申请日:2013-05-03
Applicant: 南京信息工程大学
Abstract: 本发明提供利用硫化铜吸附去除水中抗生素类污染物的方法,属于水污染控制领域。该方法为:将含抗生素类污染物的废水过滤,调节pH至5-9;将处理后的废水通过装有硫化铜的床层。所述抗生素类污染物为四环素类、青霉素类、大环内酯类、磺胺类氟喹诺酮类抗生素中的任意一种。与现有水体中抗生素的去除技术相比,本发明的有益效果在于:1.能够选择性络合去除水体中抗生素类污染物,出水浓度可低至1μg/L以下;2.吸附量大,硫化铜的吸附量可以达到500mg/g;3.吸附速率快,易于再生,操作简便,成本低,无二次污染。
-
公开(公告)号:CN103319634A
公开(公告)日:2013-09-25
申请号:CN201310264077.5
申请日:2013-06-28
Applicant: 南京信息工程大学
IPC: C08F12/08 , C08F8/32 , C08F8/24 , B01J20/26 , C02F1/00 , C02F1/28 , B01J31/06 , B01J35/10 , C02F101/34
Abstract: 本发明公开了一种含季胺基的中孔复合功能树脂及其制备方法与应用。该复合功能树脂为季胺基团修饰的中孔吸附树脂;季胺基团含量为1.0~2.5mmol/g;复合功能树脂比表面积为450~850m2/g,平均孔径为4-10nm。本发明制备的复合功能树脂对酞酸酯同时具有物理吸附、催化水解和水解产物吸附三重作用,从而能够深度净化水体中的酞酸酯类污染物。
-
公开(公告)号:CN102874899A
公开(公告)日:2013-01-16
申请号:CN201210404739.X
申请日:2012-10-23
Applicant: 南京信息工程大学
IPC: C02F1/42 , C02F101/34
Abstract: 本发明提供一种利用离子交换树脂去除水体中邻苯二甲酸单酯类污染物的方法,相比现有的去除技术,该方法具有吸附量大,选择性强,易于分离再生和操作简便的优势。该方法包括以下步骤:1)将含邻苯二甲酸单酯类污染物的废水经过滤去除其中的不溶性杂质,然后将废水pH值调至6-8范围内;2)在常温环境下,将步骤1)得到的废水通过装有阴离子交换树脂的床层;3)当出水浓度达到进水浓度的2%时,停止吸附,用氯化钠溶液对树脂进行脱附再生。
-
公开(公告)号:CN102718280A
公开(公告)日:2012-10-10
申请号:CN201210200764.6
申请日:2012-06-18
Applicant: 南京信息工程大学
IPC: C02F1/28 , C02F1/58 , C02F101/34
Abstract: 本发明公开了一种去除水体中酞酸单酯类环境激素的方法,包括以下步骤:将受酞酸单酯类环境激素污染的水体过滤,调节pH值为3-5;向过滤后的水体中加入针铁矿,搅拌8-24h达到吸附平衡;针铁矿在水体中的浓度为0.1-10g/L;搅拌速度为570-1790rmp/min;将吸附平衡的水体过滤,分离吸附酞酸单酯的针铁矿,得到净化水。本发明去除水体中水体中酞酸单酯类环境激素的方法,去除速率快、吸附量大,吸附后的针铁矿脱附再生容易,可以重复利用。
-
-
-
-
-
-
-
-
-