-
公开(公告)号:CN115422920B
公开(公告)日:2023-02-28
申请号:CN202211365207.X
申请日:2022-11-03
Applicant: 南京信息工程大学
IPC: G06F40/279 , G06F40/30 , G06F16/35 , G06N3/045 , G06N3/0464 , G06N3/0442 , G06N3/048 , G06N3/084 , G06Q50/18
Abstract: 本发明公开基于BERT和GAT的裁判文书争议焦点识别方法,预处理待识别的裁判文书,获得具有文本语义联系的待识别标签特征P,包括:拆分文本获取文本一及文本一对应的标签组成的数据对Data1和文本二及文本二对应的标签组成的数据对Data2;将Data1和Data2输入到文本表征神经网络,获得文本表征;将预先获取的标签邻接矩阵和标签向量矩阵输入图注意力神经网络,得到标签特征;对文本表征与标签特征关联的相似特征进行提取,获得基于文本语义联系的待识别标签特征P。本发明有效地处理长文本,引入图注意力神经网络对多标签进行关联性建模,识别与标签相关的信息,在每个法律文本中提取与对应标签相关的区别性信息。
-
公开(公告)号:CN115422920A
公开(公告)日:2022-12-02
申请号:CN202211365207.X
申请日:2022-11-03
Applicant: 南京信息工程大学
Abstract: 本发明公开基于BERT和GAT的裁判文书争议焦点识别方法,预处理待识别的裁判文书,获得具有文本语义联系的待识别标签特征P,包括:拆分文本获取文本一及文本一对应的标签组成的数据对Data1和文本二及文本二对应的标签组成的数据对Data2;将Data1和Data2输入到文本表征神经网络,获得文本表征;将预先获取的标签邻接矩阵和标签向量矩阵输入图注意力神经网络,得到标签特征;对文本表征与标签特征关联的相似特征进行提取,获得基于文本语义联系的待识别标签特征P。本发明有效地处理长文本,引入图注意力神经网络对多标签进行关联性建模,识别与标签相关的信息,在每个法律文本中提取与对应标签相关的区别性信息。
-